留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧空位调控BiVO4纳米片的制备及光解水制氧性能

刘宇飞 杨玉蓉 孙政新 刘畅 邱敏 高帆

刘宇飞, 杨玉蓉, 孙政新, 刘畅, 邱敏, 高帆. 氧空位调控BiVO4纳米片的制备及光解水制氧性能[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 22-27. doi: 10.6054/j.jscnun.2022039
引用本文: 刘宇飞, 杨玉蓉, 孙政新, 刘畅, 邱敏, 高帆. 氧空位调控BiVO4纳米片的制备及光解水制氧性能[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 22-27. doi: 10.6054/j.jscnun.2022039
LIU Yufei, YANG Yurong, SUN Zhengxin, LIU Chang, QIU Min, GAO Fan. The Synthesis of Oxygen Vacancy-mediated BiVO4 Nanosheets and Their Performance in Photocatalytic Water Splitting O2 Evolution[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(3): 22-27. doi: 10.6054/j.jscnun.2022039
Citation: LIU Yufei, YANG Yurong, SUN Zhengxin, LIU Chang, QIU Min, GAO Fan. The Synthesis of Oxygen Vacancy-mediated BiVO4 Nanosheets and Their Performance in Photocatalytic Water Splitting O2 Evolution[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(3): 22-27. doi: 10.6054/j.jscnun.2022039

氧空位调控BiVO4纳米片的制备及光解水制氧性能

doi: 10.6054/j.jscnun.2022039
基金项目: 

黑龙江省省属高等学校基本科研业务项目 2020-KYYWF-0883

详细信息
    通讯作者:

    杨玉蓉,Email: yangyurong@hrbeu.edu.cn

  • 中图分类号: TB321;O643.36

The Synthesis of Oxygen Vacancy-mediated BiVO4 Nanosheets and Their Performance in Photocatalytic Water Splitting O2 Evolution

  • 摘要: 采用水热和烧结方法制备了氧空位调控的BiVO4纳米片。通过X射线衍射仪、电子自旋共振谱仪、透射电子显微镜、紫外-可见分光光度计、荧光光谱仪和光解水制氧系统研究了不同氧空位含量(OV)BiVO4纳米片的结构和光解水制氧性能。通过对氧空位含量的调控,实现了对BiVO4纳米片的光吸收和光电性能的优化,极大提高了BiVO4纳米片的光解水制氧效率。结果表明:引入氧空位后,BiVO4纳米片在可见光区的光吸收明显增强,并且随着氧空位含量的增加,样品的吸收边发生明显红移。适量氧空穴的引入显著提高了光生电子和空穴的分离,从而提高光生电子的利用率。BiVO4-OV2纳米片的光催化产氧速率约433 μmol/(h·g),约为BiVO4纳米片的10倍。
  • 图  1  BiVO4和BiVO4-OV纳米片的XRD谱图

    Figure  1.  The XRD patterns of BiVO4 and BiVO4-OV nanosheets

    图  2  BiVO4和BiVO4-OV纳米片的EPR谱

    Figure  2.  The EPR spectra of BiVO4 and BiVO4-OV nanosheets

    图  3  BiVO4和BiVO4-OV2纳米片的HRTEM图

    Figure  3.  The HRTEM images of BiVO4 and BiVO4-OV2 nanosheets

    图  4  BiVO4及BiVO4-OV纳米片的PL谱和瞬态光电响应

    Figure  4.  The PL spectra and transient photocurrent responses of BiVO4 and BiVO4-OV nanosheets

    图  5  BiVO4和BiVO4-OV纳米片的UV-Vis DRS谱

    Figure  5.  The UV-Vis DRS spectra of BiVO4 and BiVO4-OV nanosheets

    图  6  BiVO4和BiVO4-OV纳米片的XPS价带谱和能带结构图

    Figure  6.  The XPS valence band spectra and energy band structure diagram of BiVO4 and BiVO4-OV nanosheets

    图  7  不同使用次数下BiVO4和BiVO4-OV2纳米片的产氧量

    Figure  7.  The O2 yield of BiVO4 and BiVO4-OV2 nanosheets at different using times

    表  1  BiVO4基光催化剂的光解水产氧速率

    Table  1.   The photocatalytic O2 generation rate of BiVO4-based photocatalysts

    催化剂 产氧速率/(μmol·h-1·g-1)
    Cd0.5Zn0.5S-BiVO4[3] 12.1
    BiVO4/g-C3N4[20] 97
    NiO/CDs/BiVO4[21] 60
    BiVO4@ZnIn2S4/Ti3C2[22] 50.83
    超薄BiVO4纳米带[23] 117
    BiVO4-OV2纳米片(本文) 433
    注:光源均采用300 W氙灯(λ>420 nm)。
    下载: 导出CSV
  • [1] 江丰, 李林涛, 冯旷, 等. 化合物半导体Cu2ZnSnS4太阳电池与人工光合作用制氢[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202006001.htm

    JIANG F, LI L T, FENG K, et al. Cell and artificial photosynthesis for hydrogen production[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202006001.htm
    [2] ZHOU X M, LIU N, SCHMIDT J, et al. Noble-metal-free photocatalytic hydrogen evolution activity: the impact of ball milling anatase nanopowders with TiH2[J]. Advanced Materials, 2017, 29(5): 1604747/1-7.
    [3] 王熙, 董海太, 石思琦, 等. Cu2O/(rGO-TiO2)复合薄膜的制备及其光催化产氢性能[J]. 华南师范大学学报(自然科学版), 2018, 50(4): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201804008.htm

    WANG X, DONG H T, SHI S Q, et al. Fabrication of a Cu2O/(rGO- TiO2) composite film for efficient photoca-talytic hydrogen production[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(4): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201804008.htm
    [4] ZENG C, HU Y, ZHANG T, et al. Core-satellite structured Z-scheme catalyst Cd0.5Zn0.5S/BiVO4 for highly efficiency and stable photocatalytic water splitting[J]. Journal of Materials Chemistry A, 2018, 6: 16932-16942. doi: 10.1039/C8TA04258F
    [5] 张辉, 宋海燕, 阮舒红, 等. MoS2@ZnO异质结纳米材料的制备及光催化性能[J]. 华南师范大学学报(自然科学版), 2019, 51(1): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201901007.htm

    ZHANG H, SONG H, RUAN S, et al. The preparation and photocatalytic properties of MoS2@ZnO heterojunction nanomaterials[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(1): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201901007.htm
    [6] HUANG W, HE Q, HU Y P, et al. Molecular heterostructures of covalent triazine frameworks for enhanced photocatalytic hydrogen production[J]. Angewandte Chemie International Edition, 2019, 58(26): 8676-8680. doi: 10.1002/anie.201900046
    [7] LI L D, YAN J Q, WANG T, et al. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production[J]. Nature Communication, 2015, 6: 5881-5891. doi: 10.1038/ncomms6881
    [8] WEI T C, ZHU Y N, AN X Q, et al. Defect modulation of z-scheme TiO2/Cu2O photocatalysts for durable Water splitting[J]. ACS Catalyst, 2019, 9(9): 8346-8354. doi: 10.1021/acscatal.9b01786
    [9] PEI D N, GONG L, ZHANG A Y, et al. Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction[J]. Nature Communication, 2015, 6: 8696/1-10.
    [10] ZHANG N, LI X Y, YE H C, et al. Oxide defect engineering enables to couple solar energy into oxygen activation[J]. Journal of American Chemical Society, 2016, 138(28): 8928-8935. doi: 10.1021/jacs.6b04629
    [11] LIU D N, CHEN D Y, LI N J, et al. Surface engineering of g-C3N4 by stacked oxygen vacancies-rich BiOBr sheets for boosting photocatalytic performance[J]. Angewandte Chemie International Edition, 2020, 132(11): 4549-4554.
    [12] LI C Q, YI S S, CHEN D L, et al. Oxygen vacancy engineered SrTiO3 nanofibers for enhanced photocatalytic H2 production[J]. Journal of Materials Chemistry A, 2019, 7(30): 17974-17980. doi: 10.1039/C9TA03701B
    [13] ONDA K, LI B, PETEK H, et al. Two-photon photoemission spectroscopy of TiO2(110) surfaces modified by defects and O2 or H2O adsorbates[J]. Physical Review B, 2004, 70: 045415/1-11.
    [14] KNOTEK M L, FEIBELMAN P J. Ion desorption by core-hole auger decay[J]. Physical Review Letters, 1978, 40: 964-967. doi: 10.1103/PhysRevLett.40.964
    [15] THOMPSON T, YATES J. TiO2-based photocatalysis: surface defects, oxygen and charge transfer[J]. Topics in Catalysis, 2005, 35: 197-210. doi: 10.1007/s11244-005-3825-1
    [16] ZHOU P, YU J G, JARONIEC M. all-solid-state z-scheme photocatalytic systems[J]. Advanced Materials, 2014, 26(29): 4920-4935. doi: 10.1002/adma.201400288
    [17] HU Z, YUAN L, LIU Z, et al. A highly efficient photocatalyst hydrogenated black TiO2 for the photocatalytic splitting of water[J]. Angewandte Chemie International Edition, 2016, 55: 9579/1-3.
    [18] TAN H Q, ZHAO Z, NIU M, et al. A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity[J]. Nanoscale, 2014, 6: 10216-10223. doi: 10.1039/C4NR02677B
    [19] WANG J, SHI W, LIU D, et al. Supra molecular organic nanofibers with highly efficient and stable visible light photooxidation performance[J]. Applied Catalysis B: Environmental, 2017, 202: 289-297. doi: 10.1016/j.apcatb.2016.09.037
    [20] SUN Z, YU Z, LIU Y, et al. Construction of 2D/2D BiVO4/g-C3N4 nanosheet hetero structures with improved photocatalytic activity[J]. Journal of Colloid and Interface Science, 2019, 533: 251-258. doi: 10.1016/j.jcis.2018.08.071
    [21] LIU C, FU Y, ZHAO J, et al. All-solid-state z-scheme system of NiO/CDs/BiVO4 for visible light-driven efficient overall water splitting[J]. Chemical Engineering Journal, 2019, 358: 134-142. doi: 10.1016/j.cej.2018.10.005
    [22] DU X, ZHAO T, XIU Z. BiVO4@ZnIn2S4/Ti3C2 MXene quantum dots assembly all-solid-state direct z-scheme photocatalysts for efficient visible-light-driven overall water splitting[J]. Applied Materials Today, 2020, 20: 100719/1-11.
    [23] JIAO Z, YU H, WANG X, et al. Ultrathin BiVO4 nanobelts: controllable synthesis and improved photocatalytic oxidation of water[J]. RSC Advances, 2016, 6: 73136-73139. doi: 10.1039/C6RA15566A
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  3
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-04
  • 网络出版日期:  2022-07-29
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回