留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NiO-FeS纳米复合材料的电沉积与电催化水分解性能

范厚强 李来胜 李旭凯 王静

范厚强, 李来胜, 李旭凯, 王静. NiO-FeS纳米复合材料的电沉积与电催化水分解性能[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 15-21. doi: 10.6054/j.jscnun.2022038
引用本文: 范厚强, 李来胜, 李旭凯, 王静. NiO-FeS纳米复合材料的电沉积与电催化水分解性能[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 15-21. doi: 10.6054/j.jscnun.2022038
FAN Houqiang, LI Laisheng, LI Xukai, WANG Jing. The Electrodeposition of NiO-FeS Nanocomposites and Their Performance of Electrocatalytic Water Splitting[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(3): 15-21. doi: 10.6054/j.jscnun.2022038
Citation: FAN Houqiang, LI Laisheng, LI Xukai, WANG Jing. The Electrodeposition of NiO-FeS Nanocomposites and Their Performance of Electrocatalytic Water Splitting[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(3): 15-21. doi: 10.6054/j.jscnun.2022038

NiO-FeS纳米复合材料的电沉积与电催化水分解性能

doi: 10.6054/j.jscnun.2022038
基金项目: 

广东省基础与应用基础研究基金项目 2019A1515110945

详细信息
    通讯作者:

    王静,Email: jing.wang@m.scnu.edu.cn

  • 中图分类号: O646;TB332

The Electrodeposition of NiO-FeS Nanocomposites and Their Performance of Electrocatalytic Water Splitting

  • 摘要: 采用电沉积法在镍网(NF)基底上原位合成了氧化镍/硫化铁(NiO-FeS@NF)纳米复合材料,用于提高电解水效率。采用扫描电镜(SEM)、透射电镜(TEM)、能量色散X射线谱(EDS)和X射线光电子能谱(XPS)等分析NiO-FeS的表面形貌和化学组分。结果表明:NiO-FeS呈明显的二维片状结构,主要由FeS和NiO组成,两者形成了有效的异质结。直接采用NiO-FeS@NF工作电极进行电催化析氧反应(OER),可提升电催化析氧性能。二维片状结构能够提供较大的比表面积和较多的活性位点,NiO-FeS界面处的电子转移速度加快。该研究可为高效纳米催化剂的制备提供一条便利且廉价的途径。
  • 图  1  不同纳米复合材料的SEM图及NiO-FeS@NF的TEM图

    Figure  1.  The SEM images of different nanocomposites and the TEM images of NiO-FeS@NF

    图  2  NiO-FeS@NF的高分辨率XPS谱

    Figure  2.  The high-resolution XPS spectra of NiO-FeS@NF

    图  3  两步电沉积法制备NiO-FeS@NF复合材料的示意图

    Figure  3.  The schematic illustration of the synthesis of NiO-FeS@NF nanocomposites with the two-step electrodeposition method

    图  4  不同条件下沉积NiO-FeS@NF材料的LSV曲线

    Figure  4.  The LSV curves of NiO-FeS@NF materials deposited under different conditions

    图  5  NiO-FeS@NF、FeS@NF和NiO@NF的LSV和塔菲尔曲线

    Figure  5.  The LSV and Tafel curves of NiO-FeS@NF, FeS@NF and NiO@NF

    图  6  NiO-FeS@NF复合材料在1.494 V vs RHE下的i-t曲线

    Figure  6.  The i-t curve of NiO-FeS@NF nanocomposites at the applied potential of 1.494 V vs RHE

    图  7  不同材料的Nyquist图

    Figure  7.  The Nyquist plots of different materials

  • [1] LI X, ZHAO L L, YU J Y, et al. Water splitting: from electrode to green energy system[J]. Nano-Micro Letters, 2020, 12(10): 103-131.
    [2] CALLEJA J F, READ C G, ROSKE C W, et al. Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction[J]. Chemistry of Materials, 2016, 28: 6017-6044. doi: 10.1021/acs.chemmater.6b02148
    [3] ZHOU P, HE J Y, ZOU Y Q, et al. Single-crystalline layered double hydroxides with rich defects and hierarchical structure by mild reduction for enhancing the oxygen evolution reaction[J]. Science China Chemistry, 2019, 62: 1365-1370. doi: 10.1007/s11426-019-9511-x
    [4] CHE Q J, BAI N N, LI Q, et al. One-step electrodeposition of a hierarchically structured S-doped NiCo film as a highly-efficient electrocatalyst for the hydrogen evolution reaction[J]. Nanoscale, 2018, 10: 15238-15248. doi: 10.1039/C8NR03944E
    [5] LU X Y, ZHAO C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities[J]. Nature Communications, 2015, 6: 6616/1-7.
    [6] PEI Y, YANG Y, ZHANG F F, et al. Controlled electrodeposition synthesis of Co-Ni-P film as a flexible and inexpensive electrode for efficient overall water splitting[J]. ACS Applied Materials Interfaces, 2017, 9: 31887-31896. doi: 10.1021/acsami.7b09282
    [7] CHE Q, LI Q, CHEN X, et al. Assembling amorphous (Fe-Ni)Cox-OH/Ni3S2 nanohybrids with S-vacancy and interfacial effects as an ultra-highly efficient electrocatalyst: inner investigation of mechanism for alkaline water-to-hydrogen/oxygen conversion[J]. Applied Catalysis B: Environmental, 2020, 263: 118338/1-9.
    [8] YU N, CAO W, HUTTULA M, et al. Fabrication of FeNi hydroxides double-shell nanotube arrays with enhanced performance for oxygen evolution reaction[J]. Applied Catalysis B: Environmental, 2020, 261: 118193/1-10.
    [9] ZHANG G, FENG Y S, LU W T, et al. Enhanced catalysis of electrochemical overall water splitting in alkaline media by Fe doping in Ni3S2 nanosheet arrays[J]. ACS Catalysis, 2018, 8: 5431-5441. doi: 10.1021/acscatal.8b00413
    [10] XIN J P, TAN H, LIU Z H, et al. Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting[J]. Journal of Materials Chemistry A, 2019, 7: 5025-5034.
    [11] 赵少飞, 刘鹏, 李婉萍, 等. Ni3S2-多孔泡沫镍电极制备及其赝电容性能[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202006005.htm

    ZHAO S F, LIU P, LI W P, et al. Preparation of Ni3S2-Ni@Ni foam electrode and its pseudocapacitance properties[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202006005.htm
    [12] IRSHAN A, MMUICHANDRAIAH N. Electrodeposited nickel-cobalt-sulfide catalyst for the hydrogen evolution reaction[J]. ACS Applied Materials and Interfaces, 2017, 9: 19746-19755. doi: 10.1021/acsami.6b15399
    [13] PARK Y S, CHOI W S, JANG M J, et al. Three-dimensional dendritic Cu-Co-P electrode by one-step electrodeposition on a hydrogen bubble template for hydrogen evolution reaction[J]. ACS Sustainable Chemistry and Engineering, 2019, 7: 10734-10741. doi: 10.1021/acssuschemeng.9b01426
    [14] BOSE R, KARUPPASAMY K, RAJAN H, et al. Electrodeposition of unary oxide on a bimetallic hydroxide as a highly active and stable catalyst for water oxidation[J]. ACS Sustainable Chemistry and Engineering, 2019, 7: 16392-16400. doi: 10.1021/acssuschemeng.9b03496
    [15] LIU B, QU S X, KOU Y, et al. In situ electrodeposition of cobalt sulfide nanosheet arrays on carbon cloth as a highly efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions[J]. ACS Applied Materials and Interfaces, 2018, 10: 30433-30440. doi: 10.1021/acsami.8b10645
    [16] ZHOU Q Q, LI T T, QIAN J J, et al. CuO nanorod arrays shelled with amorphous NiFe layered double hydroxide film for enhanced electrocatalytic water oxidation activity[J]. ACS Applied Energy Materials, 2018, 1(3): 1364-1373. doi: 10.1021/acsaem.8b00076
    [17] CAO M, XUE Z, NIU J J, et al. Facile electrodeposition of Ni-Cu-P dendrite nanotube films with enhanced hydrogen evolution reaction activity and durability[J]. ACS Applied Materials and Interfaces, 2018, 10: 35224-35233. doi: 10.1021/acsami.8b12321
    [18] TAN C, CAO X H, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117: 6225-6331. doi: 10.1021/acs.chemrev.6b00558
    [19] CHEN M Y, ZHOU Q, DU X N, et al. Synthesis of binder-free Co/CoO encapsulated in graphene as electrode material for electrochemical applications[J]. Journal of Alloys and Compounds, 2019, 783: 363-370. doi: 10.1016/j.jallcom.2018.12.309
    [20] WU H, WANG J, JIN W, et al. Recent development of two-dimensional metal-organic framework derived electroca-talysts for hydrogen and oxygen electrocatalysis[J]. Nanoscale, 2020, 12: 18497-18522. doi: 10.1039/D0NR04458J
    [21] LIAO C A, YANG B P, ZHANG N, et al. Constructing conductive interfaces between nickel oxide nanocrystals and polymer carbon nitride for efficient electrocatalytic oxygen evolution reaction[J]. Advanced Functional Materials, 2019, 29(40): 1904020/1-9.
    [22] YU Q, LUO Y, MAHMOOD A, et al. Engineering two-dimensional materials and their heterostructures as high-performance electrocatalysts[J]. Electrochemical Energy Reviews, 2019, 2: 373-394. doi: 10.1007/s41918-019-00045-3
    [23] LIU X, WANG X, YUAN X, et al. Rational composition and structural design of in situ grown nickel-based electrocatalysts for efficient water electrolysis[J]. Journal of Materials Chemistry A, 2015, 4: 167-172.
    [24] LI X P, WANG Y, WANG J J, et al. Sequential electrodeposition of bifunctional catalytically active structures in MoO3/Ni-NiO composite electrocatalysts for selective hydrogen and oxygen evolution[J]. Advanced Materials, 2020, 32(39): 2003414/1-12.
    [25] YU H T, QUAN T, MEI S L, et al. Prompt electrodeposition of Ni nanodots on Ni foam to construct a high-performance water-splitting electrode: efficient, scalable, and recyclable[J]. Nano-Micro Letters, 2019, 11(3): 75-87.
    [26] WANG J, ZHANG E P, YAO C G, et al. One-step solvothermal synthesis and electrochemical properties of graphene-supported dendritic CoNi2S4 nanostructures[J]. Journal of Materials Science: Materials in Electronics, 2019, 30: 108-119.
    [27] ZHANG F, JI R J, LIU Y H, et al. A novel nickel-based honeycomb electrode with microtapered holes and abundant multivacancies for highly efficient overall water splitting[J]. Applied Catalysis B: Environmental, 2020, 276: 119141/1-11.
    [28] ZHANG P L, LI L, NORDLUND D, et al. Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation[J]. Nature Communications, 2018, 9: 381/1-10. doi: 10.1038/s41467-018-06056-w
    [29] XU X, LI C, LIM J G, et al. Hierarchical design of NiOOH@Amorphous Ni-P bilayer on a 3D mesh substrate for high-efficiency oxygen evolution reaction[J]. ACS Applied Materials and Interfaces, 2018, 10: 30273-30282. doi: 10.1021/acsami.8b06730
    [30] HE K, TADESSE T, LIU X, et al. Utilizing the space-charge region of the FeNi-LDH/CoP p-n junction to promote performance in oxygen evolution electrocatalysis[J]. Angewandte Chemie International Edition, 2019, 131: 12029-12035.
    [31] FARHAT R, DHAINY J, HALAOUI L I. OER catalysis at activated and codeposited NiFe-oxo/hydroxide thin films is due to postdeposition surface-Fe and is not sustainable without Fe in solution[J]. ACS Catalysis, 2020, 10: 20-35. doi: 10.1021/acscatal.9b02580
    [32] LIU H B, YANG L, QIAO K W, et al. A new concept analogous to homogeneous catalysis to construct in-situ regenerative electrodes for long-term oxygen evolution reaction[J]. Nano Energy, 2020, 76: 105115/1-8.
    [33] WU F, GUO X X, HAO G Z, et al. Electrodeposition of sulfur-engineered amorphous nickel hydroxides on MIL-53(Fe) nanosheets to accelerate the oxygen evolution reaction[J]. Nanoscale, 2019, 11: 14785-14792.
    [34] LI L, WANG P, SHAO Q. Metallic nanostructures with low dimensionality for electrochemical water splitting[J]. Chemical Society Reviews, 2020, 49: 3072-3106.
    [35] VIJ V, SULTAN S, HARZANDI A, et al. Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions[J]. ACS Catalysis, 2017, 7: 7196-7225. doi: 10.1021/acscatal.7b01800
  • 加载中
图(7)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  2
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-28
  • 网络出版日期:  2022-07-29
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回