The Preparation of Cu2O-TiO2 Composite Films and Their Properties of Photocatalytic and Hydrogen Production
-
摘要: 采用电化学沉积和涂覆法将窄带半导体材料Cu2O与TiO2复合制备了Cu2O-TiO2复合材料薄膜,并通过扫描电子显微镜(SEM)、X射线衍射(XRD)、荧光光谱(PL)、紫外-可见漫反射光谱(UV-Vis DRS)进行了表征。以甲醇溶液为模拟废水进行产氢性能的测试,探究了光源、TiO2质量分数、甲醇体积分数、pH对产氢性能的影响。实验表明:制备的Cu2O-TiO2复合薄膜材料可直接在太阳光下催化水中甲醇产氢,且甲醇体积分数越高产氢量越大,在甲醇体积分数为50%且在偏酸性时产氢量最大。Abstract: Cu2O-TiO2 composite films were prepared by combining narrow-band semiconductor material Cu2O and TiO2 with the electrochemical deposition and coating methods, and characterized with SEM, XRD, PL and UV-Vis DRS. The hydrogen production performance was tested with methanol solution as simulated wastewater. The effects of light source, TiO2 loading, methanol solution concentration and pH on hydrogen production performance were investigated. The results show that the prepared Cu2O-TiO2 composite films can directly catalyze the hydrogen production of organic matter in water under sunlight. The higher the concentration of organic matter, the higher the hydrogen production. When the concentration of methanol is 50%, the hydrogen production is highest. In addition, the hydrogen production is higher when it is acidic.
-
Key words:
- Cu2O-TiO2 /
- solar light /
- hydrogen production
-
表 1 Cu2O-TiO2在不同光源下的产氢速率
Table 1. The hydrogen production rate of Cu2O-TiO2 under different light sources
光源 产氢速率/(mmol·h-1·m-2) 紫外光 38.03 太阳光 93.12 可见光 未检出 -
[1] 郭烈锦, 刘涛, 纪军, 等. 利用太阳能规模制氢[J]. 科技导报, 2005, 23(2): 29-33. doi: 10.3321/j.issn:1000-7857.2005.02.008GUO L J, LIU T, JI J, et al. Scale hydrogen production from solar energy[J]. Science and Technology Review, 2005, 23(2): 29-33. doi: 10.3321/j.issn:1000-7857.2005.02.008 [2] NIU J H. Research on the hydrogen production technology[C]//Proceedings of 2021 11th International Conference on Renewable and Clean Energy. IOP Conference Series: Earth and Environmental Science, 2021, 813: 012004/1-6. [3] 曹军文, 张文强, 李一枫, 等. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ202112005.htmCAO J W, ZHANG W Q, LI Y F, et al. Current status of hydrogen production in China[J]. Progress in Chemistry, 2021, 33(12): 2215-2244. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ202112005.htm [4] 朱维群, 齐情情, 王倩, 等. 化石燃料环境友好工业路线开发[J]. 山东大学学报(理学版), 2017, 52(5): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX201705004.htmZHU W Q, QI Q Q, WANG Q, et al. The development of fossil fuel environment-friendly industrial route[J]. Journal of Shandong University(Natural Science), 2017, 52(5): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX201705004.htm [5] 李亮荣, 李秋平, 艾盛, 等. 传统化石与新型生物质能源重整制氢研究现状[J]. 化学与生物工程, 2021, 38(11): 1-6. doi: 10.3969/j.issn.1672-5425.2021.11.001LI L R, LI Q P, AI S, et al. Research status of hydrogen production from reforming of fossil energy and new biomass energy[J]. Chemistry and Bioengineering, 2021, 38(11): 1-6. doi: 10.3969/j.issn.1672-5425.2021.11.001 [6] 朱俏俏, 程纪华. 氢能制备技术研究进展[J]. 石油石化节能, 2015, 5(12): 51-54. doi: 10.3969/j.issn.2095-1493.2015.12.018 [7] JI M D, WANG J L. Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators[J]. International Journal of Hydrogen Energy, 2021, 46(78): 38612-38635. doi: 10.1016/j.ijhydene.2021.09.142 [8] 王泽. 太阳能作为新能源的应用前景[J]. 皮革制作与环保科技, 2021, 2(20): 30-31. https://www.cnki.com.cn/Article/CJFDTOTAL-PGZZ202120016.htmWANG Z. The application prospect of solar energy as new energy[J]. Leather Manufacture and Environmental Technology, 2021, 2(20): 30-31. https://www.cnki.com.cn/Article/CJFDTOTAL-PGZZ202120016.htm [9] 王熙, 董海太, 石思琦, 等. Cu2O/(rGO-TiO2)复合薄膜的制备及其光催化产氢性能[J]. 华南师范大学学报(自然科学版), 2018, 50(4): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201804008.htmWANG X, DONG H T, SHI S Q, et al. Fabrication of a Cu2O/(rGO-TiO2) Composite film for efficient photoca-talytic hydrogen production[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(4): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201804008.htm [10] 廖添, 宋亭, 杨定乔, 等. Fe、Cr共掺杂TiO2纳米球增强光催化制氢[J]. 华南师范大学学报(自然科学版), 2017, 49(5): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201705006.htmLIAO T, SONG T, YANG D Q, et al. Fe, Cr codoped TiO2 nanosphere with enhanced photocatalytic hydrogen evolution[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(5): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201705006.htm [11] 王熙, 董海太, 齐中, 等. 复合光催化膜MoS2/Ag/TiO2同步降解有机物及产氢的研究[J]. 华南师范大学学报(自然科学版), 2017, 49(4): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201704010.htmWANG X, DONG H T, QI Z, et al. Simultaneously hydrogen production and organic degradation by composite MoS2/Ag/TiO2 film[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(4): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201704010.htm [12] 马宇翔, 马艺文, 徐东, 等. 铜及铜基化合物改性TiO2在光催化产氢领域中的研究进展[J]. 功能材料与器件学报, 2021, 27(5): 431-444. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCQ202105008.htmMA Y X, MA Y W, XU D, et al. Research progress of copper and copper-based nanoparticles modified TiO2 in photocatalytic hydrogen production[J]. Journal of Functional Materials and Devices, 2021, 27(5): 431-444. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCQ202105008.htm [13] 刘颖, 徐贺龙, 王雪芹. TiO2光催化剂的制备及应用研究进展[J]. 当代化工, 2021, 50(9): 2217-2220. doi: 10.3969/j.issn.1671-0460.2021.09.044LIU Y, XU H L, WANG X Q. Research progress in preparation and application of TiO2 Photocatalyst[J]. Contemporary Chemical Industry, 2021, 50(9): 2217-2220. doi: 10.3969/j.issn.1671-0460.2021.09.044 [14] PARACCHINO A, LAPORTE V, SIVULA K. Highly active oxide photocathode for photoelectrochemical water reduction[J]. Nature Materials, 2011, 10(6): 456-461. doi: 10.1038/nmat3017 [15] 姜鉴哲, 任铁真. Cu2O-TiO2异质结光催化剂的研究进展[J]. 化学研究与应用, 2021, 33(12): 2292-2300. doi: 10.3969/j.issn.1004-1656.2021.12.002JIANG J Z, REN T Z. Research progress of Cu2O-TiO2 heterojunction photocatalyst[J]. Chemical Research and Application, 2021, 33(12): 2292-2300. doi: 10.3969/j.issn.1004-1656.2021.12.002 [16] WANG X, DONG H, ZHE H, et al. Fabrication of a Cu2O/Au/TiO2 composite film for efficient photocatalytic hydrogen production from aqueous solution of methanol and glucose[J]. Materials Science and Engineering B, 2017, 219: 10-19. doi: 10.1016/j.mseb.2017.02.011 [17] MONTALTI M, MUROV S L. Handbook of photochemistry[M]. Boca Raton: CRC Press, 2006: 650. [18] CHENG W Y, YU T H, CHAO K J, et al. Cu2O-decorated mesoporous TiO2 beads as a highly efficient photocatalyst for hydrogen production[J]. ChemCatChem, 2014, 6(1): 293-300. doi: 10.1002/cctc.201300681 -