留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu2O-TiO2复合膜的制备及其光催化与产氢性能

王熙 蔡奕璇 萧子君 何春 李来胜

王熙, 蔡奕璇, 萧子君, 何春, 李来胜. Cu2O-TiO2复合膜的制备及其光催化与产氢性能[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 8-14. doi: 10.6054/j.jscnun.2022037
引用本文: 王熙, 蔡奕璇, 萧子君, 何春, 李来胜. Cu2O-TiO2复合膜的制备及其光催化与产氢性能[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 8-14. doi: 10.6054/j.jscnun.2022037
WANG Xi, CAI Yixuan, XIAO Zijun, HE Chun, LI Laisheng. The Preparation of Cu2O-TiO2 Composite Films and Their Properties of Photocatalytic and Hydrogen Production[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(3): 8-14. doi: 10.6054/j.jscnun.2022037
Citation: WANG Xi, CAI Yixuan, XIAO Zijun, HE Chun, LI Laisheng. The Preparation of Cu2O-TiO2 Composite Films and Their Properties of Photocatalytic and Hydrogen Production[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(3): 8-14. doi: 10.6054/j.jscnun.2022037

Cu2O-TiO2复合膜的制备及其光催化与产氢性能

doi: 10.6054/j.jscnun.2022037
基金项目: 

广东省自然科学基金项目 2022A1515011377

广东省环境污染控制与修复技术重点实验室开放基金资助项目 2020B1212060022

详细信息
    通讯作者:

    王熙, Email: wangxi@m.scnu.edu.cn

  • 中图分类号: TQ116.2

The Preparation of Cu2O-TiO2 Composite Films and Their Properties of Photocatalytic and Hydrogen Production

  • 摘要: 采用电化学沉积和涂覆法将窄带半导体材料Cu2O与TiO2复合制备了Cu2O-TiO2复合材料薄膜,并通过扫描电子显微镜(SEM)、X射线衍射(XRD)、荧光光谱(PL)、紫外-可见漫反射光谱(UV-Vis DRS)进行了表征。以甲醇溶液为模拟废水进行产氢性能的测试,探究了光源、TiO2质量分数、甲醇体积分数、pH对产氢性能的影响。实验表明:制备的Cu2O-TiO2复合薄膜材料可直接在太阳光下催化水中甲醇产氢,且甲醇体积分数越高产氢量越大,在甲醇体积分数为50%且在偏酸性时产氢量最大。
  • 图  1  实验装置示意图

    Figure  1.  The schematic of experimental apparatus

    图  2  Cu2O薄膜表面及Cu2O-TiO2/Cu横截面的SEM图

    Figure  2.  The SEM images of Cu2O film and the cross section plane of Cu2O-TiO2/Cu

    图  3  Cu2O和Cu2O-TiO2薄膜的XRD图谱

    Figure  3.  The XRD patterns of Cu2O and Cu2O-TiO2 films

    图  4  Cu2O、TiO2和Cu2O-TiO2的UV-Vis DRS谱

    Figure  4.  The UV-Vis DRS spectra of Cu2O, TiO2 and Cu2O-TiO2

    图  5  Cu2O、TiO2和Cu2O-TiO2的光致荧光光谱

    Figure  5.  The photofluorescence spectra of Cu2O, TiO2 and Cu2O-TiO2

    图  6  TiO2质量分数对产氢性能的影响

    Figure  6.  The effect of TiO2 loading on the properties of hydrogen production

    图  7  甲醇质量分数对产氢量的影响

    Figure  7.  The effect of methanol mass fraction on hydrogen production

    图  8  pH对产氢量的影响

    Figure  8.  The effect of pH on hydrogen production

    表  1  Cu2O-TiO2在不同光源下的产氢速率

    Table  1.   The hydrogen production rate of Cu2O-TiO2 under different light sources

    光源 产氢速率/(mmol·h-1·m-2)
    紫外光 38.03
    太阳光 93.12
    可见光 未检出
    下载: 导出CSV
  • [1] 郭烈锦, 刘涛, 纪军, 等. 利用太阳能规模制氢[J]. 科技导报, 2005, 23(2): 29-33. doi: 10.3321/j.issn:1000-7857.2005.02.008

    GUO L J, LIU T, JI J, et al. Scale hydrogen production from solar energy[J]. Science and Technology Review, 2005, 23(2): 29-33. doi: 10.3321/j.issn:1000-7857.2005.02.008
    [2] NIU J H. Research on the hydrogen production technology[C]//Proceedings of 2021 11th International Conference on Renewable and Clean Energy. IOP Conference Series: Earth and Environmental Science, 2021, 813: 012004/1-6.
    [3] 曹军文, 张文强, 李一枫, 等. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ202112005.htm

    CAO J W, ZHANG W Q, LI Y F, et al. Current status of hydrogen production in China[J]. Progress in Chemistry, 2021, 33(12): 2215-2244. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ202112005.htm
    [4] 朱维群, 齐情情, 王倩, 等. 化石燃料环境友好工业路线开发[J]. 山东大学学报(理学版), 2017, 52(5): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX201705004.htm

    ZHU W Q, QI Q Q, WANG Q, et al. The development of fossil fuel environment-friendly industrial route[J]. Journal of Shandong University(Natural Science), 2017, 52(5): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX201705004.htm
    [5] 李亮荣, 李秋平, 艾盛, 等. 传统化石与新型生物质能源重整制氢研究现状[J]. 化学与生物工程, 2021, 38(11): 1-6. doi: 10.3969/j.issn.1672-5425.2021.11.001

    LI L R, LI Q P, AI S, et al. Research status of hydrogen production from reforming of fossil energy and new biomass energy[J]. Chemistry and Bioengineering, 2021, 38(11): 1-6. doi: 10.3969/j.issn.1672-5425.2021.11.001
    [6] 朱俏俏, 程纪华. 氢能制备技术研究进展[J]. 石油石化节能, 2015, 5(12): 51-54. doi: 10.3969/j.issn.2095-1493.2015.12.018
    [7] JI M D, WANG J L. Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators[J]. International Journal of Hydrogen Energy, 2021, 46(78): 38612-38635. doi: 10.1016/j.ijhydene.2021.09.142
    [8] 王泽. 太阳能作为新能源的应用前景[J]. 皮革制作与环保科技, 2021, 2(20): 30-31. https://www.cnki.com.cn/Article/CJFDTOTAL-PGZZ202120016.htm

    WANG Z. The application prospect of solar energy as new energy[J]. Leather Manufacture and Environmental Technology, 2021, 2(20): 30-31. https://www.cnki.com.cn/Article/CJFDTOTAL-PGZZ202120016.htm
    [9] 王熙, 董海太, 石思琦, 等. Cu2O/(rGO-TiO2)复合薄膜的制备及其光催化产氢性能[J]. 华南师范大学学报(自然科学版), 2018, 50(4): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201804008.htm

    WANG X, DONG H T, SHI S Q, et al. Fabrication of a Cu2O/(rGO-TiO2) Composite film for efficient photoca-talytic hydrogen production[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(4): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201804008.htm
    [10] 廖添, 宋亭, 杨定乔, 等. Fe、Cr共掺杂TiO2纳米球增强光催化制氢[J]. 华南师范大学学报(自然科学版), 2017, 49(5): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201705006.htm

    LIAO T, SONG T, YANG D Q, et al. Fe, Cr codoped TiO2 nanosphere with enhanced photocatalytic hydrogen evolution[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(5): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201705006.htm
    [11] 王熙, 董海太, 齐中, 等. 复合光催化膜MoS2/Ag/TiO2同步降解有机物及产氢的研究[J]. 华南师范大学学报(自然科学版), 2017, 49(4): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201704010.htm

    WANG X, DONG H T, QI Z, et al. Simultaneously hydrogen production and organic degradation by composite MoS2/Ag/TiO2 film[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(4): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201704010.htm
    [12] 马宇翔, 马艺文, 徐东, 等. 铜及铜基化合物改性TiO2在光催化产氢领域中的研究进展[J]. 功能材料与器件学报, 2021, 27(5): 431-444. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCQ202105008.htm

    MA Y X, MA Y W, XU D, et al. Research progress of copper and copper-based nanoparticles modified TiO2 in photocatalytic hydrogen production[J]. Journal of Functional Materials and Devices, 2021, 27(5): 431-444. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCQ202105008.htm
    [13] 刘颖, 徐贺龙, 王雪芹. TiO2光催化剂的制备及应用研究进展[J]. 当代化工, 2021, 50(9): 2217-2220. doi: 10.3969/j.issn.1671-0460.2021.09.044

    LIU Y, XU H L, WANG X Q. Research progress in preparation and application of TiO2 Photocatalyst[J]. Contemporary Chemical Industry, 2021, 50(9): 2217-2220. doi: 10.3969/j.issn.1671-0460.2021.09.044
    [14] PARACCHINO A, LAPORTE V, SIVULA K. Highly active oxide photocathode for photoelectrochemical water reduction[J]. Nature Materials, 2011, 10(6): 456-461. doi: 10.1038/nmat3017
    [15] 姜鉴哲, 任铁真. Cu2O-TiO2异质结光催化剂的研究进展[J]. 化学研究与应用, 2021, 33(12): 2292-2300. doi: 10.3969/j.issn.1004-1656.2021.12.002

    JIANG J Z, REN T Z. Research progress of Cu2O-TiO2 heterojunction photocatalyst[J]. Chemical Research and Application, 2021, 33(12): 2292-2300. doi: 10.3969/j.issn.1004-1656.2021.12.002
    [16] WANG X, DONG H, ZHE H, et al. Fabrication of a Cu2O/Au/TiO2 composite film for efficient photocatalytic hydrogen production from aqueous solution of methanol and glucose[J]. Materials Science and Engineering B, 2017, 219: 10-19. doi: 10.1016/j.mseb.2017.02.011
    [17] MONTALTI M, MUROV S L. Handbook of photochemistry[M]. Boca Raton: CRC Press, 2006: 650.
    [18] CHENG W Y, YU T H, CHAO K J, et al. Cu2O-decorated mesoporous TiO2 beads as a highly efficient photocatalyst for hydrogen production[J]. ChemCatChem, 2014, 6(1): 293-300. doi: 10.1002/cctc.201300681
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  6
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-10
  • 网络出版日期:  2022-07-29
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回