[1] |
CHEN W H, PALMIERIA. Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case[J]. Discrete and Continuous Dynamical Systems, 2020, 40(9): 5513-5540. doi: 10.3934/dcds.2020236
|
[2] |
CHEN W H, PALMIERI A. Blow-up result for a semili-near wave equation with a nonlinear memory term[M]//CICOGNANI M, SANTO D, PARMEGGIANI A, et al. An-omalies in Partial Differential Equations. Switzerland: Sp-ringer, 2021: 77-97.
|
[3] |
CAIXETA A H, LASIECKA I, DOMINGOS CAVALCANTI V N. On long time behavior of Moore-Gibson-Thompson equation with molecular relaxation[J]. Evolution Equations & Control Theory, 2017, 5(4): 661-676.
|
[4] |
LASIECKA I, WANG X J. Moore-Gibson-Thompson equation with memory, part I: exponential decay of energy[J]. Zeitschrift für angewandte Mathematik und Physik, 2016, 67(2): 17-39. doi: 10.1007/s00033-015-0597-8
|
[5] |
PELLICER M, SAID-HOUARI B. Wellposedness and decay rates for the Cauchy problem of the Moore-Gibson-Thompson equation arising in high intensity ultrasound[J]. Applied Mathematics and Optimization, 2019, 80(2): 447-478. doi: 10.1007/s00245-017-9471-8
|
[6] |
CHEN W H. Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms[J]. Nonlinear Analysis, 2021, 202: 112160-112186. doi: 10.1016/j.na.2020.112160
|
[7] |
CHEN W H, PALMIERI A. Weakly coupled system of semilinear wave equations with distinct scale-invariantterms in the linear part[J]. Zeitschrift für angewandte Mathematik und Physik, 2019, 70(2): 67-85. doi: 10.1007/s00033-019-1112-4
|
[8] |
LAI N A, TAKAMURA H. Nonexistence of global solutions of nonlinear wave equations with weak time-dependent damping related to Glassey's conjecture[J]. Differential and Integral Equations, 2019, 32(1/2): 37-48.
|
[9] |
OUYANG B P, LIN Y W. Nonexistence of global solutions for a semilinear double-wave equation with nonlinearity of derivative type[J]. Chinese Quarterly Journal of Mathe-matics, 2021, 36(2): 149-159.
|
[10] |
PALMIERI A, TAKAMURA H. Nonexistence of global solutions for a weakly coupled system of semilinear damped wave equations in the scattering case with mixed nonli-near terms[J]. Nonlinear Differential Equations and Applications NoDEA, 2020, 27(6): 58-86. doi: 10.1007/s00030-020-00662-8
|
[11] |
YORDANOV B T, ZHANG Q S. Finite time blow up for critical wave equations in high dimensions[J]. Journal of Functional Analysis, 2006, 231(2): 361-374.
|