The Effect of Small Ester Monomers on the Slow-release Behavior of Polycarboxylate Superplasticizer
-
摘要: 分别以丙烯酸羟乙酯(HEA)、丙烯酸羟丙酯(HPA)、衣康酸二甲酯(DEI)、富马酸二甲酯(DMF)作为功能小单体,丙烯酸和甲基烯丙基聚氧乙烯醚(HPEG)为主要原料,在氧化-还原体系下,成功制备了一系列缓释型聚羧酸减水剂(PCE)。采用红外光谱(FTIR)、核磁共振氢谱(1H NMR)等对目标产物的结构进行了表征。根据水泥净浆的流动性对比结果,确定了合成的减水剂在不同时间所达到的最大流动度,考察了不同酯类单体对聚羧酸减水剂的缓释性及分散保持性能的影响,并测试了水泥浆体的Zeta电位、PCE的吸附行为。结果表明: DEI的缓释效果优于HEA和HPA,水泥浆流动度在2 h内从190 mm达到255 mm,大大延长了减水剂PCE在水泥表面的吸附时间和流动度保持时间,在实际应用中具有良好的参考意义和应用前景。Abstract: A series of slow-release polycarboxylate superplasticizer (PCE) were prepared under the oxidation-reduction system, using hydroxyethyl acrylate (HEA), hydroxypropyl acrylate (HPA), dimethyl itaconate (DEI) and dimethyl fumarate (DMF) as functional small monomers respectively and acrylic acid and methallyl Polyoxyethy-lene ether (HPEG) as the main raw material. The structure of the polymers was characterized with FTIR and 1H NMR spectroscopy. The maximum fluidity reached by the synthetic superplasticizer at different intervals was determined according to the comparison of the fluidity of the cement paste, the effect of the different ester monomers on the slow release of the polycarboxylate superplasticizer was investigated, and the Zeta potential of the cement paste and the adsorption behavior of PCE were tested. The results showed that the slow-release effect of dimethyl itaconate was better than that of hydroxyethyl and hydroxypropyl ester, and the fluidity of the cement slurry was better than that of hydroxyethyl and hydroxypropyl esters. From 190 mm to 255 mm within 2 h, the adsorption time and fluidity retention time of PCE on the cement surface was greatly prolonged. The material has good application prospects for high fluidity and long-term maintenance of concrete configurations.
-
Key words:
- polycarboxylate superplasticizer /
- slow-release /
- functional monomer /
- adsorption /
- cement slurry
-
表 1 PCE中各单体的用量及聚合物多分散性系数(PDI)
Table 1. The dosage of each monomer in PCE and the polymer dispersity index(PDI)
样品 投料比/mol Mn/(g·mol-1) Mw/(g·mol-1) PDI PCE-HEA 3.25∶1∶3.35 52 651 81 609 1.55 PCE-HPA 3.25∶1∶3.43 46 752 76 673 1.64 PCE-DEI 3.25∶1∶2.67 58 963 105 543 1.79 PCE-DMF 3.25∶1∶2.34 48 721 74 055 1.52 注:投料比=c(AA) ∶ c(HPEG) ∶ c(HEA、HPA、DEI或DMF)。 表 3 混凝土坍落度损失随时间的变化
Table 3. The changes of concrete slump loss over time
样品 t=0 min t=60 min t=120 min 土坍落 扩展度 土坍落 扩展度 土坍落 扩展度 PCE-HEA 220 560 220 530 190 475 PCE-HPA 230 585 220 540 185 470 PCE-DEI 215 510 210 515 200 490 PCE-DMF 210 495 195 500 190 480 -
[1] OUATTARA D, YAHIA A, MBONIMPA M, et al. Effects of superplasticizer on rheological properties of cemented paste backfills[J]. International Journal of Mineral Processing, 2017, 161: 28-40. doi: 10.1016/j.minpro.2017.02.003 [2] YAMADA K, OGAWA S, HANEHARA S. Controlling of the adsorption and dispersing force of polycarboxylate-type superplasticizer by sulfate ion concentration in aqueous phase[J]. Cement and Concrete Research, 2001, 31(3): 375-383. doi: 10.1016/S0008-8846(00)00503-2 [3] WINNEFELD F, BECKER S, PAKUSCH J, et al. Effects of the molecular architecture of comb-shaped superplasticizers on their performance in cementitious systems[J]. Cement and Concrete Composites, 2007, 29(4): 251-262. doi: 10.1016/j.cemconcomp.2006.12.006 [4] LI F X, CHEN Y Z, LONG S Z, et al. The retardation effect of super-retarding polycarboxylate-type superplasticizer on cement hydration[J]. Arabian Journal for Science and Engineering, 2013, 38(3): 571-577. doi: 10.1007/s13369-012-0326-y [5] 逄建军, 魏中原. 缓释型聚羧酸减水剂的合成及性能[C]//第十三届高性能混凝土学术研讨会论文集. 唐山: [s. n. ], 2019.PANG J J, WEI Z Y. Synthesis and performance of timed-release polycarboxylate superplasticizer[C]. The 13th High Performance Concrete Symposium. Tangshan: [s. n. ], 2019. [6] 杨晓晨, 杨霞, 周普玉, 等. 酯类缓释型聚羧酸减水剂的合成与性能研究[C]. 北京: 中国建材工业出版社, 2016.YANG X C, YANG X, ZHOU P Y, et al. Study on synthesis and performance of ester slow-release polycarboxylate water reducer[C]. Beijing: China Building Materials Industry Press, 2016. [7] AKHLAGHI O, AYTAS T, TATLI B, et al. Modified poly(carboxylate ether)-based superplasticizer for enhanced flowability of calcined clay-limestone-gypsum blended Portland cement[J]. Cement and Concrete Research, 2017, 101114/1-22. [8] ZHANG L R, KONG X M, XING F, et al. Working mechanism of post-acting polycarboxylate superplasticizers containing acrylate segments[J]. Journal of Applied Polymer Science, 2018, 135(5): 45753/1-13. [9] LIU J, YANG Y, ZHANG Q, et al. Effect of molecular weight of slow-release polycarboxylate superplasticizer on the properties of cementitious system[J]. Advances in Cement Research, 2018, 30(7): 285-292. doi: 10.1680/jadcr.17.00069 [10] 李安, 李顺, 温永向, 等. 缓释型聚羧酸减水剂的常温合成及其性能评价[J]. 新型建筑材料, 2020, 47(8): 5-8. doi: 10.3969/j.issn.1001-702X.2020.08.002LI A, LI S, WEN Y X, et al. Synthesis and performance evaluation of sustained-release polycarboxylate water reducer at room temperature[J]. New Building Materials, 2020, 47(8): 5-8. doi: 10.3969/j.issn.1001-702X.2020.08.002 [11] LIU X, WANG Z M, LI H Q, et al. Mechanism and application performance of slow-release polycarboxylate superplasticizer[J]. Advanced Materials Research, 2012, 560: 574-579. [12] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 混凝土外加剂匀质性试验方法: GB/T 8077—2012[S]. 北京: 中国标准出版社, 2012. [13] 中华人民共和国国家质量监督检验检疫总局. 普通混凝土拌合物性能试验方法标准: GB/T 50080—2016[S]. 北京: 中国标准出版社, 2016. [14] 李慧群, 姚燕, 王子明, 等. 羧酸酯水解速率对缓释型聚羧酸超塑化剂分散性能的影响[J]. 硅酸盐学报, 2020, 48(2): 246-252. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202002015.htmLI H Q, YAO Y, WANG Z M, et al. Influence of hydrolysis rate of carboxylates on dispersion performance of slow-release polycarboxylate superplasticizer[J]. Journal of The Chinese Ceramic Society, 2020, 48(2): 246-252. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202002015.htm [15] 陈文红, 邓磊, 蒋禹, 等. 减水保坍型聚羧酸母液的合成及性能研究[J]. 新型建筑材料, 2021, 48(5): 22-24. doi: 10.3969/j.issn.1001-702X.2021.05.006CHEN W H, DENG L, JIANG Y, et al. Synthesis and performance study of water-reducing and slump-preserving polycarboxylic acid mother liquor[J]. New Building Materials, 2021, 48(5): 22-24. doi: 10.3969/j.issn.1001-702X.2021.05.006 [16] PLANK J, SACHSENHAUSER B, de REESE J. Experimental determination of the thermodynamic parameters affecting the adsorption behaviour and dispersion effectiveness of PCE superplasticizers[J]. Cement and Concrete Research, 2010, 40(5): 699-709. doi: 10.1016/j.cemconres.2009.12.002 [17] LIU X, WANG Z M, LI H Q, et al. Mechanism and application performance of slow-release polycarboxylate superplasticizer[J]. In Material Sciences and Technology, 2012, 560/561: 574-579. [18] 何志琴. 聚羧酸盐减水剂的低温合成及性能研究[D]. 西安: 陕西科技大学, 2016.HE Z Q. Low-temperature synthesis and performance study of polycarboxylate water-reducing agent[D]. Xi'an: Shaanxi University of Science and Technology, 2016. [19] YAMADA K, OGAWA S, HANEHARA S. Controlling of the adsorption and dispersing force of polycarboxylate-type superplasticizer by sulfate ion concentration in aqueous phase[J]. Cement and Concrete Research, 2001, 31(3): 375-383. doi: 10.1016/S0008-8846(00)00503-2 [20] MORGA M, ADAMCZYK Z, KOSIOR D. Silica nanoparticle monolayers on a macroion modified surface: formation mechanism and stability[J]. Physical Chemistry Chemical Physics, 2017, 19(34): 22721-22732. doi: 10.1039/C7CP03876C [21] 危静. 功能单体对聚羧酸减水剂抗泥性能的影响[D]. 西安: 陕西科技大学, 2018.WEI J. The effect of functional monomers on the anti-mud performance of polycarboxylate water-reducing agent[D]. Xi'an: Shaanxi University of Science and Technology, 2018. -