留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

互花米草绿色合成ZnO纳米颗粒及其光催化和抑菌性能

景花 纪丽丽 周亚蕊 郭健 孙佳星 陆诗尧

景花, 纪丽丽, 周亚蕊, 郭健, 孙佳星, 陆诗尧. 互花米草绿色合成ZnO纳米颗粒及其光催化和抑菌性能[J]. 华南师范大学学报(自然科学版), 2022, 54(2): 24-29. doi: 10.6054/j.jscnun.2022022
引用本文: 景花, 纪丽丽, 周亚蕊, 郭健, 孙佳星, 陆诗尧. 互花米草绿色合成ZnO纳米颗粒及其光催化和抑菌性能[J]. 华南师范大学学报(自然科学版), 2022, 54(2): 24-29. doi: 10.6054/j.jscnun.2022022
JING Hua, JI Lili, ZHOU Yarui, GUO Jian, SUN Jiaxin, LU Shiyao. Green Synthesized ZnO Nanoparticles from Spartina alterniflora and their Photocatalytic and Antibacterial Properties[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(2): 24-29. doi: 10.6054/j.jscnun.2022022
Citation: JING Hua, JI Lili, ZHOU Yarui, GUO Jian, SUN Jiaxin, LU Shiyao. Green Synthesized ZnO Nanoparticles from Spartina alterniflora and their Photocatalytic and Antibacterial Properties[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(2): 24-29. doi: 10.6054/j.jscnun.2022022

互花米草绿色合成ZnO纳米颗粒及其光催化和抑菌性能

doi: 10.6054/j.jscnun.2022022
基金项目: 

浙江省高校基本科研业务费项目 2019J00025

详细信息
    通讯作者:

    纪丽丽,Email: jll-gb@163.com

  • 中图分类号: O644.11

Green Synthesized ZnO Nanoparticles from Spartina alterniflora and their Photocatalytic and Antibacterial Properties

  • 摘要: 利用互花米草(SAF)叶提取物采用溶胶-凝胶法合成了ZnO纳米颗粒(Nano-ZnO),采用扫描电子显微镜(SEM)、傅里叶红外光谱(FTIR)、X射线衍射(XRD)、紫外-可见漫反射光谱(UV-Vis DRS)对其表面形貌、活性基团、晶型结构和光吸收特性进行了表征,分析了ZnO纳米颗粒对孔雀石绿(MG)的光催化降解活性以及对金黄色葡萄球菌的抑菌性能。结果表明:采用互花米草叶提取物绿色合成的ZnO纳米颗粒具有丰富的含氧活性基团、较小的粒径和良好的分散性;经计算Nano-ZnO带隙能为3.09 eV,表明其光吸收利用效率较高;可见光下Nano-ZnO对孔雀石绿(MG)的降解效率达到98.2%;在光催化降解过程中,h+和·O2-是发挥作用的主要活性物种;Nano-ZnO对金黄色葡萄球菌的抑菌率是ZnO的2倍。该研究为互花米草的高值化利用提供了新途径,同时为纳米金属氧化物的制备提供了新方法。
  • 图  1  Nano-ZnO和ZnO的XRD图谱

    Figure  1.  The XRD patterns of Nano-ZnO and ZnO

    图  2  Nano-ZnO和ZnO的FTIR谱

    Figure  2.  The FTIR spectra of Nano-ZnO and ZnO

    图  3  Nano-ZnO和ZnO的UV-Vis DRS谱

    Figure  3.  The UV-Vis DRS spectrum of Nano-ZnO and ZnO

    图  4  Nano-ZnO和ZnO的SEM图

    Figure  4.  The SEM images of Nano-ZnO and ZnO

    图  5  Nano-ZnO和ZnO对孔雀石绿的去除率

    注:t为负值表示吸附平衡点(t=0)之前的时间点。

    Figure  5.  The removal rate of malachite on Nano-ZnO and ZnO

    图  6  孔雀石绿溶液的吸收光谱

    Figure  6.  The absorption spectra of malachite green solution

    图  7  BQ、FA和DMSO对可见光照射下Nano-ZnO对孔雀石绿去除率的影响

    Figure  7.  The effects of BQ, FA and DMSO on the degradation rates of malachite green on Nano-ZnO under visible light irradiation

    图  8  Nano-ZnO和ZnO的抑菌性能

    Figure  8.  The antibacterial performance of Nano-ZnO and ZnO

  • [1] THANGAVELUR M, GANAPATHY R, RAMASAMY P, et al. Fabrication of virus metal hybrid nanomaterials: an ideal reference for bio semiconductor[J]. Arabian Journal of Chemistry, 2020, 13(1): 2750-2765. doi: 10.1016/j.arabjc.2018.07.006
    [2] 王靖宇, 杜乐乐, 王婷, 等. 氧化锌纳米颗粒抗菌活性在医学中的应用及研究进展[J]. 口腔医学, 2017, 37(11): 1045-1049. https://www.cnki.com.cn/Article/CJFDTOTAL-KQYX201711022.htm

    WANG J Y, DU L L, WANG T, et al. Application and research progress of antimicrobial activity of zinc oxide nano-particles in medicine[J]. Stomatology, 2017, 37(11): 1045-1049. https://www.cnki.com.cn/Article/CJFDTOTAL-KQYX201711022.htm
    [3] 黄国富, 王淼, 王棉棉, 等. 表面活性剂强化PAC-Pd/Fe纳米颗粒降解四溴双酚A的研究[J]. 华南师范大学学报(自然科学版), 2020, 52(2): 53-59. doi: 10.6054/j.jscnun.2020027

    HUANG G F, WANG M, WANG M M, et al. Degradation of Tetrabromobisphenol A with surfactant-enhanced PAC-Pd/Fe nanoparticles[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(2): 53-59. doi: 10.6054/j.jscnun.2020027
    [4] 黄明, 万霞, 铁绍龙. 管状氧化锌的碱溶法合成及光催化降解亚甲基蓝的性能[J]. 华南师范大学学报(自然科学版), 2014, 46(5): 54-58. doi: 10.6054/j.jscnun.2014.06.040

    HUANG M, WAN X, TIE S L. Synthesis of tubular ZnO material and photocatalytic degradation of Methylene Blue[J]. Journal of South China Normal University (Natural Science Edition), 2014, 46(5): 54-58. doi: 10.6054/j.jscnun.2014.06.040
    [5] AMEEN S, SEO H K, AKHTAR M S, et al. Novel graphene/polyaniline nanocomposites and its photocatalytic activity toward the degradation of rose Bengal dye[J]. Chemical Engineering Journal, 2012, 210(1): 220-228.
    [6] SHARMA S, DALAL V S, MAHAJAN V. Synthesis of Zinc oxide nano flower for photovoltaic applications[J]. Materials Today: Proceedings, 2016, 3(6): 1359-1362. doi: 10.1016/j.matpr.2016.04.015
    [7] TIAN H, FAN H, MA J, et al. Noble metal-free modified electrode of exfoliated graphitic carbon nitride/ZnO nanosheets for highly efficient hydrogen peroxide sensing[J]. Electrochimica Acta, 2017, 247(1): 787-794.
    [8] SINGH P, KIM Y J, ZHANG D, et al. Biological synthesis of nanoparticles from plants and microorganisms[J]. Trends in Biotechnology, 2016, 34(7): 588-599. doi: 10.1016/j.tibtech.2016.02.006
    [9] 李昱蓉, 武海涛, 张森, 等. 互花米草入侵和持续扩张下黄河三角洲滨海湿地潮沟的形态特征及其变化[J]. 湿地科学, 2021, 19(1): 88-97. https://www.cnki.com.cn/Article/CJFDTOTAL-KXSD202101009.htm

    LI Y R, WU H T, ZHANG S, et al. Morphological characteristics and changes of tidal creeks in coastal wetlands of the Yellow River Delta under spartina alterniflora invasion and continuous expansion[J]. Wetland Science, 2021, 19(1): 88-97. https://www.cnki.com.cn/Article/CJFDTOTAL-KXSD202101009.htm
    [10] 马永建, 袁宝君, 李莉, 等. 互花米草成分研究Ⅱ. GC-MS法研究挥发性成分[J]. 中国生化药物杂志, 2002, 23(1): 36-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SHYW200201014.htm

    MA Y J, YUAN B J, LI L, et al. Studies on component of Spartina alterniflora Loisel Ⅱ. The research of volatile component with GC-MS[J]. Chinese Journal of Biochemical Pharmaceutics, 2002, 23(1): 36-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SHYW200201014.htm
    [11] ZHOU J, ZHAO F, WANG Y, et al. Size-controlled synthesis of ZnO nanoparticles and their photoluminescence properties[J]. Journal of Luminescence, 2006, 122/123: 195-197.
    [12] PILLAI A M, SIVASANKARAPILLAI V S, RAHDAR A, et al. Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity[J]. Journal of Molecular Structure, 2020, 1211(5): 128107/1-8.
    [13] PATHANIA D, SHARMA A, KUMAR S, et al. Bio-synthesized Cu-ZnO hetro-nanostructure for catalytic degradation of organophosphate chlorpyrifos under solar illumination[J]. Chemosphere, 2021, 277: 130315/1-12.
    [14] JABER G S, KHASHAN K S, ABBAS M J. Study the antibacterial activity of zinc oxide nanoparticles synthesis by laser ablation in liquid[J]. Materials Today: Proceedings, 2020, 42(5): 2668-2673.
    [15] 吴丽, 吴限, 张宇佳, 等. 氧化锌/氧化镁纳米复合材料的制备及其光催化性能研究[J]. 化工新型材料, 2021, 49(2): 191-194. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC202102045.htm

    WU L, WU X, ZHANG Y J, et al. Preparation and photocatalytic property of ZnO/MgO nanocomposite[J]. New Chemical Materials, 2021, 49(2): 191-194. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC202102045.htm
    [16] MATINISE N, FUKU X G, KAVIYARASU K, et al. ZnO nanoparticles via Moringa oleifera green synthesis: physical properties & mechanism of formation[J]. Applied Surface Science, 2017, 406(1): 339-347.
    [17] OSSAI A N, ALABI A B, EZIKE S C, et al. Zinc oxide-based dye-sensitized solar cells using natural and synthetic sensitizers[J]. Current Research in Green and Sustainable Chemistry, 2020, 3: 100043/1-6.
    [18] RAMBABU K, BHARATH G, BANAT F, et al. Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment[J]. Journal of Hazardous Materials, 2020, 402(15): 123560/1-12.
    [19] KARNAN T, SELVAKUMAR S A S. Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceum L. ) peel extract and their photocatalytic activity on methyl orange dye[J]. Journal of Molecular Structure, 2016, 1125(5): 358-365.
    [20] RAMESH P, SARAVANAN K, MANOGAR P, et al. Green synthesis and characterization of biocompatible zinc oxide nanoparticles and evaluation of its antibacterial potential[J]. Sensing and Bio-Sensing Research, 2021, 31: 100399/1-9.
    [21] ALHARTHI M N, LSMAIL I, BELLUCCI S, et al. Green synthesis of zinc oxide nanoparticles by Ziziphus jujuba leaves extract: environmental application, kinetic and thermodynamic studies[J]. Journal of Physics and Chemistry of Solids, 2021, 158: 110237/1-14.
    [22] 蔺春蕾, 李文卓, 吕雅坤, 等. 氨基化纳米银的制备及抗菌性研究[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 30-35. doi: 10.6054/j.jscnun.2020006

    LIN C L, LI W Z, LU Y K, et al. Preparation and antibacterial properties of aminated silver nanoparticles[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(1): 30-35. doi: 10.6054/j.jscnun.2020006
    [23] TYAGI P K, GOLA D, TYAGI S, et al. Synthesis of zinc oxide nanoparticles and its conjugation with antibiotic: antibacterial and morphological characterization[J]. Environmental Nanotechnology, Monitoring and Management, 2020, 14: 100391/1-6.
  • 加载中
图(8)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  37
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-09
  • 网络出版日期:  2022-05-12
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回