留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电荷与应变协同调控g-C9N7膜对CO2吸附和渗透特性的研究

王晓慧 李雪 赫文豪 卢贵武 周广刚 陈君青 赵格 王宁

王晓慧, 李雪, 赫文豪, 卢贵武, 周广刚, 陈君青, 赵格, 王宁. 电荷与应变协同调控g-C9N7膜对CO2吸附和渗透特性的研究[J]. 华南师范大学学报(自然科学版), 2022, 54(2): 18-23. doi: 10.6054/j.jscnun.2022021
引用本文: 王晓慧, 李雪, 赫文豪, 卢贵武, 周广刚, 陈君青, 赵格, 王宁. 电荷与应变协同调控g-C9N7膜对CO2吸附和渗透特性的研究[J]. 华南师范大学学报(自然科学版), 2022, 54(2): 18-23. doi: 10.6054/j.jscnun.2022021
WANG Xiaohui, LI Xue, HE Wenhao, LU Guiwu, ZHOU Guanggang, CHEN Junqing, ZHAO Ge, WANG Ning. Characteristics of CO2 Adsorption and Permeability of Porous Carbon-Nitrogen Membranes Coupling-regulated by Charge and Strain[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(2): 18-23. doi: 10.6054/j.jscnun.2022021
Citation: WANG Xiaohui, LI Xue, HE Wenhao, LU Guiwu, ZHOU Guanggang, CHEN Junqing, ZHAO Ge, WANG Ning. Characteristics of CO2 Adsorption and Permeability of Porous Carbon-Nitrogen Membranes Coupling-regulated by Charge and Strain[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(2): 18-23. doi: 10.6054/j.jscnun.2022021

电荷与应变协同调控g-C9N7膜对CO2吸附和渗透特性的研究

doi: 10.6054/j.jscnun.2022021
基金项目: 

山西省科技重大专项 20181101013

中国石油大学(北京)科研基金项目 2462020YXZZ003

详细信息
    通讯作者:

    赫文豪,Email:hwh@cup.edu.cn

  • 中图分类号: O647.32

Characteristics of CO2 Adsorption and Permeability of Porous Carbon-Nitrogen Membranes Coupling-regulated by Charge and Strain

  • 摘要: 为了有效捕获和分离CO2,提出了一种电荷与应变协同调控的气体捕获和渗透的新方法,该方法具有可逆性和动力学可控的优点。采用分子动力学(MD)模拟和基于第一性原理密度泛函理论(DFT)计算,分析了不同电荷密度和拉伸应变控制下的多孔g-C9N7纳米片对CO2捕获和渗透的影响规律。通过电荷调控策略,CO2分子渗透率高达5.94×107 GPU(即0.019 899 mol/(s·Pa·m2))。另外,CO2渗透率随拉伸应变率的增加而增大,拉伸应变率为7.5%的g-C9N7薄膜的最大渗透率为3.61×107 GPU(即0.012 094 mol/(s ·Pa ·m2))。在此基础上,采用负电荷与应变工程相结合的方法研究二者的协同效应,在负电荷为1 e、拉伸应变率为3.0%的条件下,CO2渗透率达到3.18×107 GPU(即0.001 065 mol/(s ·Pa ·m2))。此时CO2渗透率是仅施加1 e时CO2渗透率的9倍,是仅添加3.0%应变率时CO2渗透率的8倍。研究结果为开发具有CO2捕获和分离高度可控的高性能材料提供了理论指导。
  • 图  1  CO2在2×2 g-C9N7纳米片上的吸附态俯视图

    Figure  1.  The top view of the adsorption state of CO2 on a 2×2 g-C9N7 nanosheet

    图  2  CO2分子在电中性和1 e调控时g-C9N7表面的稳定吸附构型

    Figure  2.  The stable adsorption configurations of CO2 molecule on electrically neutral and 1 e regulated g-C9N7 surfaces

    图  3  CO2渗透率随负电荷数的变化

    注:1 GPU=3.35×10-10 mol/(s ·Pa ·m2),下同。

    Figure  3.  The change of CO2 permeability with negative charge

    图  4  CO2渗透率随拉伸应变率的变化

    Figure  4.  The change of CO2 permeability with tensile strain rate

    图  5  不同应变率下CO2在g-C9N7表面的稳定吸附构型

    Figure  5.  The stable adsorption configurations of CO2 on g-C9N7 surface under different tensile strain rates

    图  6  在电荷和应变协同调控下CO2在g-C9N7表面的稳定吸附构型

    Figure  6.  The stable adsorption configurations of CO2 molecule on g-C9N7 surface under the cooperative control of charge and strain

    图  7  在电荷和应变协同调控下CO2在g-C9N7表面的渗透率和吸附能

    Figure  7.  The permeability and adsorption energy of CO2 on g-C9N7 surface under the cooperative control of charge and strain

  • [1] 卢金凯, 张梦, 李斌, 等. 功能化氧化石墨烯催化CO2的化学固定[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 35-42. doi: 10.6054/j.jscnun.2021041

    LU J K, ZHANG M, LI B, et al. Chemical fixation of CO2 catalyzed by functionalized graphene oxide[J]. Journal of South China normal University(Natural Science Edition), 2021, 53(3): 35-42. doi: 10.6054/j.jscnun.2021041
    [2] QAZI S, GÓMEZ-COMA L, ALBO J, et al. CO2 capture in a hollow fiber membrane contactor coupled with ionic liquid: influence of membrane wetting and process parameters[J]. Separation and Purification Technology, 2020, 233(14): 115986/1-9.
    [3] BERNARDO P, DRIOLI E, GOLEMME G. Membrane gas separation: a review/state of the art[J]. Industrial and Engineering Chemistry Research, 2009, 48(10): 4638-4663. doi: 10.1021/ie8019032
    [4] D'ALESSANDRO D M, SMIT B, LONG J R. Carbon dio-xide capture: prospects for new materials[J]. Angewandte Chemie International Edition, 2010, 49(35): 6058-6082. doi: 10.1002/anie.201000431
    [5] ESTEVEZ L, BARPAGA D, ZHENG J, et al. Hierarchically porous carbon materials for CO2 capture: the role of pore structure[J]. Industrial and Engineering Chemistry Research, 2018, 57(4): 1262-1268. doi: 10.1021/acs.iecr.7b03879
    [6] POLONI R, LEE K, BERGER R F, et al. Understanding trends in CO2 adsorption in metal-organic frameworks with open-metal sites[J]. The Journal of Physical Chemistry Letters, 2014, 5(5): 861-865. doi: 10.1021/jz500202x
    [7] YAN T, LAN Y, TONG M, et al. Screening and design of covalent organic framework membranes for CO2/CH4 separation[J]. ACS Sustainable Chemistry and Engineering, 2018, 7(1): 1220-1227.
    [8] 张灿鹏, 邵志刚. CO2和CO分子在五边形石墨烯表面的吸附行为[J]. 华南师范大学学报(自然科学版), 2019, 51(1): 11-15. doi: 10.6054/j.jscnun.2019003

    ZHANG C P, SHAO Z G. The adsorption behavior of CO2 and CO on penta-graphene[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(1): 11-15. doi: 10.6054/j.jscnun.2019003
    [9] JIANG D E, COOPER V R, DAI S. Porous graphene as the ultimate membrane for gas separation[J]. Nano Letters, 2009, 9(12): 4019-4024. doi: 10.1021/nl9021946
    [10] XING W, LIU C, ZHOU Z, et al. Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction[J]. Energy and Environmental Science, 2012, 5(6): 7323-7327. doi: 10.1039/c2ee21653a
    [11] ZHAO Y, LIU X, YAO K X, et al. Superior capture of CO2 achieved by introducing extra-framework cations into N-doped microporous carbon[J]. Chemistry of Materials, 2012, 24(24): 4725-4734. doi: 10.1021/cm303072n
    [12] LI X, GUO T, ZHU L, et al. Charge modulated CO2 capture of C3N nanosheet: insights from DFT calculations[J]. Chemical Engineering Journal, 2018, 338: 92-98. doi: 10.1016/j.cej.2017.12.113
    [13] MA Z, ZHAO X, TANG Q, et al. Computational prediction of experimentally possible g-C3N3 monolayer as hydrogen purification membrane[J]. International Journal of Hydrogen Energy, 2014, 39(10): 5037-5042. doi: 10.1016/j.ijhydene.2014.01.046
    [14] SATHISHKUMAR N, WU S Y, CHEN H T. Chargeregulated, electric-field and combined effect controlled switchable CO2 capture and separation on penta-C2N nanosheet: a computational study[J]. Chemical Engineering Journal, 2021, 407: 127194/1-14.
    [15] CHANG X, ZHU L, XUE Q, et al. Charge controlled switchable CO2/N2 separation for g-C10N9 membrane: insights from molecular dynamics simulations[J]. Journal of CO2 Utilization, 2018, 26: 294-301. doi: 10.1016/j.jcou.2018.05.017
    [16] LI X, YIN Y, CHANG X, et al. Doping-induced enhancement of CO2 adsorption on negatively charged C3N nanosheet: insights from DFT calculations[J]. Chemical Engineering Journal, 2020, 387: 123403/1-8.
    [17] LIU Z, ZHAO G, ZHANG X, et al. Superior performance porous carbon nitride nanosheets for helium separation from natural gas: insights from MD and DFT simulations[J]. Chinese Journal of Chemical Engineering, 2021, 37: 46-53. doi: 10.1016/j.cjche.2021.05.001
    [18] SUN C, WEN B, BAI B. Application of nanoporous graphene membranes in natural gas processing: molecular simulations of CH4/CO2, CH4/H2S and CH4/N2 separation[J]. Chemical Engineering Science, 2015, 138(6): 16-21.
    [19] ZHU L, CHANG X, YIN Y, et al. Theoretical study of strain-controlled C2X (X=N, O) membrane for CO2/C2H2 separation[J]. Applied Surface Science, 2020, 530: 147250/1-8.
    [20] DENG S, HU H, ZHUANG G, et al. A strain-controlled C2N monolayer membrane for gas separation in PEMFC application[J]. Applied Surface Science, 2018, 441: 408-414. doi: 10.1016/j.apsusc.2018.02.042
  • 加载中
图(7)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  20
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-23
  • 网络出版日期:  2022-05-12
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回