留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于第一性原理计算Stone-Wales石墨烯的光学性质

谢钥 秦雪芳 邵志刚 胡梁宾

谢钥, 秦雪芳, 邵志刚, 胡梁宾. 基于第一性原理计算Stone-Wales石墨烯的光学性质[J]. 华南师范大学学报(自然科学版), 2022, 54(2): 13-17. doi: 10.6054/j.jscnun.2022020
引用本文: 谢钥, 秦雪芳, 邵志刚, 胡梁宾. 基于第一性原理计算Stone-Wales石墨烯的光学性质[J]. 华南师范大学学报(自然科学版), 2022, 54(2): 13-17. doi: 10.6054/j.jscnun.2022020
XIE Yue, QIN Xuefang, SHAO Zhigang, HU Liangbin. Optical Properties of Stone-Wales Graphene Based on First-principles Calculations[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(2): 13-17. doi: 10.6054/j.jscnun.2022020
Citation: XIE Yue, QIN Xuefang, SHAO Zhigang, HU Liangbin. Optical Properties of Stone-Wales Graphene Based on First-principles Calculations[J]. Journal of South China normal University (Natural Science Edition), 2022, 54(2): 13-17. doi: 10.6054/j.jscnun.2022020

基于第一性原理计算Stone-Wales石墨烯的光学性质

doi: 10.6054/j.jscnun.2022020
基金项目: 

国家自然科学基金项目 52072132

详细信息
    通讯作者:

    邵志刚,Email: zgshao@scnu.edu.cn

  • 中图分类号: O469

Optical Properties of Stone-Wales Graphene Based on First-principles Calculations

  • 摘要: 采用基于密度泛函理论的第一性原理计算研究了一种新型二维材料Stone-Wales(SW)石墨烯的光学性质。基于介电函数,反射谱和吸收谱等参数对其进行研究。结果显示这种狄拉克碳材料的光学性质在不同极化光下都表现出强各向异性。介电函数实部表明其静态介电常数大,这说明该材料具有很多可利用的自由载流子,所以具有优良的导电性,可作为新一代纳米电子器件的候选材料。此外,吸收光谱和反射光谱表明了SW石墨烯在全光谱区内具有比较敏感的光谱响应,这说明该材料在光电子器件领域非常具有应用前景。
  • 图  1  单层Stone-Wales石墨烯结构示意图

    Figure  1.  The schematic representations of monolayer Stone-Wales graphene structure

    图  2  ExEyEz极化下Stone-Wales石墨烯的介电函数虚部

    Figure  2.  The imaginary part of the dielectric function of Stone-Wales graphene under Ex, Ey and Ez polarizations

    图  3  ExEyEz极化下Stone-Wales石墨烯的介电函数实部

    Figure  3.  The real part of the dielectric function of Stone-Wales graphene under Ex, Ey and Ez polarizations

    图  4  ExEyEz极化下Stone-Wales石墨烯的吸收谱

    Figure  4.  The absorption spectrum of Stone-Wales graphene under Ex, Ey and Ez polarizations

    图  5  ExEyEz极化下Stone-Wales石墨烯的反射光谱

    Figure  5.  The reflection spectrum of Stone-Wales graphene under Ex, Ey and Ez polarizations

    图  6  ExEyEz极化下Stone-Wales石墨烯的损失函数曲线

    Figure  6.  The loss function curves of Stone-Wales graphene under Ex, Ey and Ez polarizations

  • [1] PEIERLS R E. Quelques proprietes typiques des corpses solides[J]. Annales Henri Poincare, 1935, 5: 177-222.
    [2] LANDAU L D. Zur Theorie der phasenumwandlungen Ⅱ[J]. Physikalische Zeitschrift der Sowjetunion, 1937, 11: 26-35.
    [3] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666-669. doi: 10.1126/science.1102896
    [4] CASTRO NETO A H, GUINEA F, PERES N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81: 109-162. doi: 10.1103/RevModPhys.81.109
    [5] ZHANG Y, TAN Y W, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438: 201-204. doi: 10.1038/nature04235
    [6] BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146: 351-355. doi: 10.1016/j.ssc.2008.02.024
    [7] WALLACE P R. The band theory of graphite[J]. Physical Review, 1947, 71: 622-634. doi: 10.1103/PhysRev.71.622
    [8] MALKO D, NEISS C, VINES F, et al. Competition for graphene: graphynes with direction-dependent dirac cones[J]. Physical Review Letters, 2012, 108: 086804/1-4.
    [9] 张灿鹏, 邵志刚. CO2和CO分子在五边形石墨烯表面的吸附行为[J]. 华南师范大学学报(自然科学版), 2019, 51(1): 11-15. doi: 10.6054/j.jscnun.2019003

    ZHANG C P, SHAO Z G. The adsorption behavior of CO2 and CO on penta-graphene[J]. Journal of South China normal University(Natural Science Edition), 2019, 51(1): 11-15. doi: 10.6054/j.jscnun.2019003
    [10] OUYANG F, PENG S, LIU Z, et al. Bandgap opening in graphene antidot lattices: the missing half[J]. ACS Nano, 2011, 5: 4023-4030. doi: 10.1021/nn200580w
    [11] WANG J, HUANG H, DUAN W, et al. Identifying Dirac cones in carbon allotropes with square symmetry[J]. The Journal of Chemical Physics, 2013, 139: 184701/1-6.
    [12] YIN H C, SHI X, HE C, et al. Stone-Wales graphene: a two-dimensional carbon semimetal with magic stability[J]. Physical Review B, 2019, 99: 041405/1-5.
    [13] BETTINGER H F, YAKOBSON B I, SCUSERIA G E. Scratching the surface of buckminsterfullerene: the barriers for Stone-Wales transformation through symmetric and asymmetric transition states[J]. Journal of the American Chemical Society, 2003, 125: 5572-5580. doi: 10.1021/ja0288744
    [14] PENG X, AHUJA R. Symmetry breaking induced bandgap in epitaxial graphene layers on SiC[J]. Nano Letters, 2008, 8: 4464-4468. doi: 10.1021/nl802409q
    [15] JIN M, JIAO N, DA H X, et al. Anisotropic optical properties of graphene/graphane superlattices[J]. Solid State Sciences, 2015, 40: 71-76. doi: 10.1016/j.solidstatesciences.2014.12.018
    [16] CHEN X, MENG R, JIANG J, et al. Electronic structure and optical properties of graphene/stanene heterobilayer[J]. Physical Chemistry Chemical Physics, 2016, 18: 16302-16309. doi: 10.1039/C6CP02424F
    [17] 邵志刚, 李白. 新型二维碳材料net-Y光学性质的第一性原理研究[J]. 华南师范大学学报(自然科学版), 2019, 51(6): 1-6. doi: 10.6054/j.jscnun.2019096

    SHAO Z G, LI B. A first-principles study on the optical properties of a novel two-dimensional carbon material net-Y[J]. Journal of South China normal University (Natural Science Edition), 2019, 51(6): 1-6. doi: 10.6054/j.jscnun.2019096
    [18] WOOTEN F. Optical properties of solids[J]. American Journal of Physics, 1973, 41: 939-940. doi: 10.1119/1.1987434
    [19] DRESSEL M, GRÜNER G. Electrodynamics of solids: optical properties of electrons in matter[M]. Cambridge: Cambridge University Press, 2002, 70: 1269-1276.
    [20] SHAO Z G, SUN Z L. Optical properties of α-, β-, γ-, and 6, 6, 12-graphyne structures: first-principle calculations[J]. Physica E: Low-dimensional Systems and Nanostructures, 2015, 74: 438-442. doi: 10.1016/j.physe.2015.07.011
    [21] KUMAR J S, SRIVASTAVA P. Optical properties of hexagonal boron nanotubes by first-principles calculations[J]. Journal of Applied Physics, 2013, 114: 073514/1-9.
  • 加载中
图(6)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  37
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-20
  • 网络出版日期:  2022-05-12
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回