The Preparation and Magnetic and Optical Properties of Cu1-xCoxInTe2 Diluted Magnetic Semiconductor
-
摘要: 采用真空电弧熔炼技术制备Cu1-xCoxInTe2(Co元素掺杂比x=0, 0.1, 0.2, 0.3)稀磁半导体。利用X射线衍射仪(XRD)、振动样品磁强计(VSM)和紫外可见近红外分光光度计(UV-Vis-NIR)分别表征样品的晶体结构、磁学性质和光学性质。研究表明:4种稀磁半导体中主相均为Cu1-xCoxInTe2,具有四方结构,空间群为I42d。掺杂的Co原子与Cu原子共同占据4a(0, 0, 0)晶位,In原子占据4b(0, 0, 1/2)晶位,Te原子占据8d(x, 1/4, 1/8)晶位。Cu1-xCoxInTe2呈现室温铁磁性,其室温磁化遵循Langevin模型,随着x的增加,其饱和磁化强度增大。调控Co掺杂量,可以提高Cu1-xCoxInTe2稀磁半导体的光吸收带宽Eg,使其具有太阳能光伏材料的应用可能性。Abstract: The diluted magnetic semiconductors Cu1-xCoxInTe2 (Co doping ratio x=0, 0.1, 0.2, 0.3) was synthesized through vacuum arc melting. X-ray diffractometer (XRD), vibrating sample magnetometer(VSM), and UV-Vis-NIR spectrometer were used to investigate their crystal structures and magnetic and optical properties, respectively. The main phases of Cu1-xCoxInTe2 crystalline has tetragonal structure with a space group of I42d. The atomic occupations are 4a(0, 0, 0) for Co and Cu atoms, 4b(0, 0, 1/2) for In and 8d(x, 1/4, 1/8) for Te, respectively. Cu1-xCoxInTe2 shows room temperature ferromagnetic characteristics, and their field dependence of magnetization follows a Langevin model. Their saturation magnetization increases with increased x. The bandgaps of Cu1-xCoxInTe2 can be adjusted by controlling the doping amount of Co, which makes possible its potential application as photovoltaic material.
-
Key words:
- CuInTe2 /
- Co doping /
- magnetic property /
- optical property
-
表 1 Cu0.8Co0.2InTe2衍射峰的指标化结果
Table 1. The index-results of diffraction peaks in Cu0.8Co0.2InTe2
h k l sin2θ实验值 sin2θ计算值 2θ实验值 2θ计算值 1 1 2 0.046 334 0.046 318 24.861 24.857 1 0 3 0.050 145 0.050 108 25.880 25.870 2 0 0 0.061 841 0.061 838 28.799 28.798 2 1 3 0.111 966 0.111 946 39.098 39.094 2 2 0 0.123 564 0.123 676 41.160 41.180 3 0 1 0.143 007 0.142 985 44.440 44.436 3 1 2 0.170 001 0.169 994 48.700 48.699 3 2 3 0.235 612 0.235 622 58.077 58.079 4 0 0 0.247 283 0.247 352 59.640 59.649 2 1 7 0.265 932 0.265 941 62.087 62.088 4 1 1 0.266 789 0.266 661 62.198 62.181 3 1 6 0.293 302 0.293 190 65.582 65.568 3 2 5 0.297 133 0.297 220 66.063 66.074 3 0 7 0.327 838 0.327 779 69.859 69.852 4 2 4 0.370 780 0.370 788 75.022 75.023 5 0 1 0.390 275 0.390 337 77.323 77.331 注:M(18)=36,F(18)=22。 表 2 Cu1-xCoxInTe2稀磁半导体中主相点阵常数及晶胞体积
Table 2. The lattice constants and cell volumes of main phase in Cu1-xCoxInTe2 diluted semiconductors magnetic
参数 CuInTe2 Cu0.9Co0.1InTe2 Cu0.8Co0.2InTe2 Cu0.7Co0.3InTe2 a/nm 0.619 2(1) 0.619 1(9) 0.619 5(1) 0.619 2(0) c/nm 1.240 6(1) 1.240 6(3) 1.241 4(4) 1.240 7(4) V/nm3 0.475 657 0.475 503 0.476 425 0.475 695 F 32(17) 19(16) 36(18) 18(18) M 19(17) 11(16) 22(18) 12(18) 表 3 Cu1-xCoxInTe2稀磁半导体的Rietveld精修结果
Table 3. The Rietveld-refined results of Cu1-xCoxInTe2 diluted magnetic semiconductors
参数 CuInTe2 Cu0.9Co0.1InTe2 Cu0.8Co0.2InTe2 Cu0.7Co0.3InTe2 a/nm 0.619 1(3) 0.619 3(4) 0.619 2(7) 0.619 2(1) c/nm 1.240 7(0) 1.241 2(9) 1.241 0(0) 1.240 7(1) V/nm3 0.475 5(9) 0.476 1(4) 0.475 9(2) 0.475 7(1) Cu(4a)或Co(4a)坐标 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) In(4b)坐标 (0, 0, 1/2) (0, 0, 1/2) (0, 0, 1/2) (0, 0, 1/2) Te(8d)坐标 (0.225 46, 1/4, 1/8) (0.221 29, 1/4, 1/8) (0.222 29, 1/4, 1/8) (0.210 68, 1/4, 1/8) Rwp/% 9.919 10.877 17.463 19.919 Rp/% 7.374 7.491 10.989 12.224 表 4 Cu1-xCoxInTe2在室温下的磁化曲线拟合结果
Table 4. The magnetization curve fitting results of Cu1-xCoxInTe2 at room temperature
样品 MS/(emu·g-1) R2 Cu0.9Co0.1InTe2 2.929 18±0.003 67 0.986 44 Cu0.8Co0.2InTe2 4.044 37±0.005 68 0.982 38 Cu0.7Co0.3InTe2 7.112 56±0.007 73 0.990 54 -
[1] DIVINCENZO D P. Quantum computation[J]. Science, 1995, 270: 255-261. doi: 10.1126/science.270.5234.255 [2] OHNO Y, YOUNG D K, BESCHOTEN B, et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure[J]. Nature, 1999, 402: 790-792. doi: 10.1038/45509 [3] BETTHAUSEN C, DOLLINGER T, SAARIKOSKI D, et al. Spin-transistor action via tunable Landau-Zener transitions[J]. Science, 2012, 337: 324-327. doi: 10.1126/science.1221350 [4] HAGELE D, RUDOLPH J, DOHRMANN S, et al. Spintronics with semiconductors[C]//2004 International Conference on MEMS, Nano and Smart Systems. Alberta: IEEE Computer Society, 2004. [5] OHNO H, MUNEKATA H, PENNEYS T, et al. Magnetotransport properties of p-type(In, Mn)As diluted magne-tic Ⅲ-Ⅴ semiconductors[J]. Physical Review Letters, 1992, 68: 2664-2667. doi: 10.1103/PhysRevLett.68.2664 [6] AKAI H. Ferromagnetism and its stability in the diluted magnetic semiconductor(In, Mn)As[J]. Physical Review Letters, 1998, 81: 3002-3005. doi: 10.1103/PhysRevLett.81.3002 [7] KOSHIHARA S, OIWA A, HIRASAWA M, et al. Ferromagnetic order induced by photogenerated carriers in magnetic Ⅲ-Ⅴ semiconductor heterostructures of(In, Mn)As/GaSb[J]. Physical Review Letters, 1997, 78: 4617-4620. doi: 10.1103/PhysRevLett.78.4617 [8] SONG C, ZENG F, GENG K W, et al. Substrate-dependent magnetization in Co-doped ZnO insulating films[J]. Physical Review B, 2007, 76: 045215/1-8. [9] TIAN Y F, YAN S S, CAO Q, et al. Origin of large positive magnetoresistance in the hard-gap regime of epitaxial Co-doped ZnO ferromagnetic semiconductors[J]. Physical Review B, 2009, 79: 115209/1-5. [10] LI Q, SHEN T T, DAI Z K, et al. Spin polarization of Zn1-xCox O probed by magnetoresistance[J]. Applied Physical Letters, 2012, 101: 172405/1-4. [11] QI S F, QIAO Z H, DENG X Z, et al, High-temperature quantum anomalous hall effect in n-p Codoped topological insulators[J]. Physical Review Letters, 2016, 117: 056804/1-6. [12] 许小红, 李小丽, 齐世飞, 等. 氧化物稀磁半导体的研究进展[J]. 物理学进展, 2012, 32: 199-231. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXJ201204002.htmXU X H, LI X L, QI S F, et al. Recent progress in oxide based diluted magnetic semiconductors[J]. Progress in Physics, 2012, 32: 199-231. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXJ201204002.htm [13] 邓正, 赵侃, 靳常青. 电荷自旋注入机制分离的新型稀磁半导体[J]. 物理, 2013, 42(10): 682-688. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ201310001.htmDENG Z, ZHAO K, JIN C Q. New types of diluted magnetic semiconductors with decoupled charge and spin doping[J]. Physics, 2013, 42(10): 682-688. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ201310001.htm [14] CHO S, CHOI S, CHA G B, et al. Room-temperature ferromagnetism in(Zn1-xMnx)GeP2 semiconductors[J]. Physical Review Letters, 2002, 88: 257203/1-4. [15] MEDVEDKIN G A, ISHIBASHI T, NISHI T, et al. Room temperature ferromagnetism in novel diluted magnetic semiconductor Cd1-xMnxGeP2[J]. Japanese Journal of Applied Physicis, 2000, 39: 949-951. doi: 10.1143/JJAP.39.L949 [16] MAHADEVAN P, ZUNGER A. Room-temperature ferromagnetism in Mn-doped semiconducting CdGeP2[J]. Physical Review Letters, 2002, 88: 47205/1-4. [17] WANG T, GUO Y Q, WANG C, et al. The effect of Co and Ce codoping in CuIn0.9CexCo0.1-xTe2[J]. Journal of Magnetism and Magnetic Materials, 2020, 502: 166506/1-6. [18] WANG T, GUO Y Q, WANG C, et al. Effects on magnetic properties and light absorption bandgaps of lattice distortions in CuIn1-xCoxSe2 chalcopyrites[J]. Journal of Alloys and Compounds, 2019, 774: 229-235. doi: 10.1016/j.jallcom.2018.09.072 [19] GUO Y Q, LI S, WANG T, et al. Structure and magnetic properties of CuIn1-xTxTe2(T=Co, Mn)[J]. AIP Advances, 2017, 7(8): 085108/1-10. [20] 郭常霖, 黄月鸿, 深鹤年. TREOR多晶X射线衍射图指标化程序的适用性[J]. 硅酸盐学报, 1996(6): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB606.008.htmKUO C L, HUANG Y H, SHEN H N. Adaptability of TREOR program for indexing X-ray powder diffraction pattern of polycrystalline materials[J]. Journal of The Chinese Creamic Society, 1996(6): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB606.008.htm [21] LIU S, LI H, LIU J, et al. Obtaining optimal structural data from X-ray powder diffraction using the Rietveld method[J]. Powder Diffraction, 2014, 29(4): 396-403. doi: 10.1017/S0885715614000682 [22] 郭新鹏, 郭永权, 王京南, 等. SmCo5型中熵、高熵金属间化合物的结构与磁性[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 1-9. doi: 10.6054/j.jscnun.2021036GUO X P, GUO Y Q, WANG J N, et al. The structure and magnetic properties of SmCo5 type medium and high-entropy intermetallic compounds[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(3): 1-9. doi: 10.6054/j.jscnun.2021036 [23] TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium[J]. Physica Status Solidi, 1996, 15(2): 627-637. [24] CUI J, DONG G, YANG Z, et al. Low dielectric loss and enhanced tunable properties of Mn-doped BST/MgO composites[J]. Journal of Alloys and Compounds, 2009, 490(1): 353-357. [25] 陈冬, 张漫虹, 钟美桃, 等. 镁铝共掺杂氧化锌薄膜的制备与光电性能研究[J]. 广东石油化工学院学报, 2021, 31(4): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SHGD202104016.htmCHEN D, ZHANG M H, ZHONG M T, et al. Preparation and optoelectronic characteristics of deposited Mg and Al Co-doped ZnO thin films[J]. Journal of Guangdong University of Petrochemical Technology, 2021, 31(4): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SHGD202104016.htm [26] KUMAR N, SINGH R K, SATYAPAL H K. Structural, optical, and magnetic properties of non-stoichiometric lithium substituted magnesium ferrite nanoparticles for multifunctional applications[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(12): 9231-9241. doi: 10.1007/s10854-020-03454-z -