留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AhHDA1影响花生毛状根生长的研究

曾丽丹 陈容钦 李晓云 李玲

曾丽丹, 陈容钦, 李晓云, 李玲. AhHDA1影响花生毛状根生长的研究[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 74-78. doi: 10.6054/j.jscnun.2021094
引用本文: 曾丽丹, 陈容钦, 李晓云, 李玲. AhHDA1影响花生毛状根生长的研究[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 74-78. doi: 10.6054/j.jscnun.2021094
ZENG Lidan, CHEN Rongqin, LI Xiaoyun, LI Ling. The Effects of AhHDA1 on the Growth of Peanut Hairy Roots[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(6): 74-78. doi: 10.6054/j.jscnun.2021094
Citation: ZENG Lidan, CHEN Rongqin, LI Xiaoyun, LI Ling. The Effects of AhHDA1 on the Growth of Peanut Hairy Roots[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(6): 74-78. doi: 10.6054/j.jscnun.2021094

AhHDA1影响花生毛状根生长的研究

doi: 10.6054/j.jscnun.2021094
基金项目: 

国家自然科学基金项目 31471422

详细信息
    通讯作者:

    李玲,Email:liling502@126.com

  • 中图分类号: Q943.2

The Effects of AhHDA1 on the Growth of Peanut Hairy Roots

  • 摘要: 花生组蛋白去乙酰化酶AhHDA1转到花生毛状根中超表达后,短侧根的毛状根比例增加. 基因表达检测结果显示,AhHDA1超表达后上调了细胞周期相关基因AhCYCD4和生长素信号转导相关基因AhIAA28的表达水平,而AhARF19的表达水平被显著抑制. 进一步通过LUC实验发现, AhHDA1激活AhCYCD4AhIAA28启动子的活性. 说明AhHDA1可能通过调控生长素信号转导和细胞分裂影响花生毛状根侧根的生长.
  • 图  1  转基因毛状根中AhHDA1的相对表达水平

    注:*P<0.05; * *P<0.01; * * *P<0.001, 下图同.

    Figure  1.  The expression levels of AhHDA1 in transgenic hairy roots

    图  2  35S∷eGFP35S∷ AhHDA1毛状根AhHDA1的蛋白表达水平

    Figure  2.  The protein expression levels of AhHDA1 in transgenic hairy roots 35S∷eGFP and 35S∷AhHDA1

    图  3  不同表型的毛状根在不同基因型花生毛状根中的百分比

    Figure  3.  The percentage of peanut hairy roots with different genotypes in different phenotypes

    图  4  AhHDA1对AhCYCD4AhIAA28表达水平的调控

    Figure  4.  The regulation of AhHDA1 on transcription levels of AhCYCD4 and AhIAA28

    图  5  AhHDA1对AhCYCD4AhIAA28启动子活性的调控

    Figure  5.  The regulation of the activities in promoters of AhCYCD4 and AhIAA28 by AhHDA1

    图  6  AhIAA28AhARF19在转AhHDA1毛状根中的表达水平

    Figure  6.  The levels of AhIAA28 and AhARF19 expression in AhHDA1 transgenic hairy roots

    表  1  qPCR所用引物

    Table  1.   The primers used for qPCR

    基因 Primers (5'- 3')
    AhHDA1 F: TCATGATGAAGACGAAAAGGCTAAT
    R: CAGCAGCATCCATGTGGGGGAGGCA
    AhCYCD4 F: TGTTGAATTGATTAGAGACTTGGCA
    R: TCTTATAGCTCAAGCATCCACCACC
    AhIAA28 F: TCCTTGAATCTGAGGCTTGC
    R: AATATGTTGAGCTTCCTCCCTA
    AhARF19 F: ATCTTACTGTATTGATCCGGGTAGC
    R: CATAACCTCTTGAGAGCATGGTATC
    下载: 导出CSV
  • [1] ZHANG Q, WANG P, HOU H, et al. Histone acetylation and reactive oxygen species are involved in the preprophase arrest induced by sodium butyrate in maize roots[J]. Protoplasma, 2016, 254(1): 167-179. doi: 10.1007%2Fs00709-015-0928-9.pdf
    [2] FUKAKI H, TANIGUCHI N, TASAKA M. PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation[J]. The Plant Journal, 2006, 48(3): 380-389. doi: 10.1111/j.1365-313X.2006.02882.x
    [3] CHUNG P J, KIM Y S, JEONG J S, et al. The histone deac-etylase OsHDAC1 epigenetically regulates the OsNAC6 gene that controls seedling root growth in rice[J]. The Plant Journal, 2009, 59(5): 764-776. doi: 10.1111/j.1365-313X.2009.03908.x
    [4] COLLIER R, FUCHS B, WALTER N, et al. Ex vitro composite plants: an inexpensive, rapid method for root biology[J]. Plant Journal, 2005, 43(3): 449-457. doi: 10.1111/j.1365-313X.2005.02454.x
    [5] LIU S, SU L C, LIU S, et al. Agrobacterium rhizogenes-mediated transformation of Arachis hypogaea: an efficient tool for functional study of genes[J]. Biotechnology & Biotechnological Equipment, 2016, 30(5): 869-878. http://www.onacademic.com/detail/journal_1000039774589610_ba09.html
    [6] LI J, TODD T C, TRICK H N, et al. Rapid in planta evaluation of root expressed transgenes in chimeric soybean plants[J]. Plant Cell Reports, 2010, 29(2): 113-123. doi: 10.1007/s00299-009-0803-2
    [7] 曾丽丹, 吴鑫泉, 李晓云, 等. AhHDA1异源表达对拟南芥根系生长的影响[J]. 植物生理学报, 2019, 55(2): 203-208. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201902012.htm

    ZENG L D, WU X Q, LI X Y, et al. Effects of AhHDA1 heterologous expression on the growth of Arabidopsis root system[J]. Acta Plant Physiology, 2019, 55(2): 203-208. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201902012.htm
    [8] 苏良辰. AhHDA1在花生响应干旱和ABA信号中的分子机制研究[D]. 广州: 华南师范大学, 2017.

    SU L C. Study on the molecular mechanism of AhHDA1 in peanut response to drought and ABA signal[D]. Guangzhou: South China Normal University, 2017.
    [9] 陈容钦, 舒文, 葛奎, 等. 干旱胁迫训练对花生生长及胁迫相关基因表达的影响[J]. 植物生理学报, 2017, 53(10): 1921-1927. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201710012.htm

    CHEN R Q, SHU W, GE K, et al. Effects of drought stress training on peanut growth and stress-related gene expression[J]. Acta Plant Physiology, 2017, 53(10): 1921-1927. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201710012.htm
    [10] 刘星. AhGLK1在花生旱后恢复生长中作用的研究[D]. 广州: 华南师范大学, 2019.

    LIU X. Study on the role of AhGLK1 in the recovery of peanut growth after drought[D]. Guangzhou: South China Normal University, 2019.
    [11] SU L C, DENG B, LIU S, et al. Isolation and characterization of an osmotic stress and ABA induced histone deacetylase in Arachis hygogaea[J]. Frontiers in Plant Science, 2015, 6: 512/1-11. http://www.onacademic.com/detail/journal_1000040531857210_eb28.html
    [12] 张拜宏. AhDREB1在植物响应干旱中的作用及对拟南芥叶片卷曲影响的研究[D]. 广州: 华南师范大学, 2019.

    ZHANG B H. The role of AhDREB1 in plant response to drought and its effect on Arabidopsis leaf curling[D]. Guangzhou: South China Normal University, 2019.
    [13] PHILIPPOT L, RAAIJMAKERS J M, LEMANCEAU P, et al. Going back to the roots: the microbial ecology of the rhizosphere[J]. Nature Reviews: Microbiology, 2013, 11(11): 789-799. doi: 10.1038/nrmicro3109
    [14] DU Y, SCHERES B. Lateral root formation and the multiple roles of auxin[J]. Journal of Experimental Botany, 2018, 69(2): 155-167. doi: 10.1093/jxb/erx223
    [15] NIEUWLAND J, MAUGHAN S, DEWITTE W, et al. The D-type cyclin CYCD4;1 modulates lateral root density in Arabidopsis by affecting the basal meristem region[J]. Proceedings of the National Academy of Sciences, 2009, 106(52): 22528-22533. doi: 10.1073/pnas.0906354106
    [16] WANG J J, GUO H S. Cleavage of INDOLE-3-ACETIC ACID INDUCIBLE28 mRNA by MicroRNA847 upregulates auxin signaling to modulate cell proliferation and lateral organ growth in Arabidopsis[J]. The Plant Cell, 2015, 27(3): 574-590. doi: 10.1105/tpc.15.00101
    [17] NGUYEN C T, TRAN G B, NGUYEN N H. Homeostasis of histone acetylation is critical for auxin signaling and root morphogenesis[J]. Plant Molecular Biology: An International Journal on Molecular Biology, Molecular Genetics and Biochemistry, 2020, 103/1-7. doi: 10.1007/s11103-020-00985-1
    [18] OKUSHIMA Y, FUKAKI H, ONODA M, et al. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis[J]. The Plant Cell, 2007, 19(1): 118-130. doi: 10.1105/tpc.106.047761
    [19] MARIN E, JOUANNET V, HERZ A, et al. miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth[J]. The Plant Cell, 2010, 22(4): 1104-1117. doi: 10.1105/tpc.109.072553
    [20] YOON E K, YANG J H, LIM J P, et al. Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development[J]. Nucleic Acids Research, 2010, 38(4): 1382-1391. doi: 10.1093/nar/gkp1128
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  122
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 网络出版日期:  2022-01-10
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回