留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加权基因共表达网络分析筛选胰腺癌肿瘤免疫相关基因

李慧月 王沐榛 喻叶 田雪梅

李慧月, 王沐榛, 喻叶, 田雪梅. 加权基因共表达网络分析筛选胰腺癌肿瘤免疫相关基因[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 61-67. doi: 10.6054/j.jscnun.2021093
引用本文: 李慧月, 王沐榛, 喻叶, 田雪梅. 加权基因共表达网络分析筛选胰腺癌肿瘤免疫相关基因[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 61-67. doi: 10.6054/j.jscnun.2021093
LI Huiyue, WANG Muzhen, YU Ye, TIAN Xuemei. Screening Genes Related with Tumor Immunity in Pancreatic Cancer with the WGCN Analysis[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(6): 61-67. doi: 10.6054/j.jscnun.2021093
Citation: LI Huiyue, WANG Muzhen, YU Ye, TIAN Xuemei. Screening Genes Related with Tumor Immunity in Pancreatic Cancer with the WGCN Analysis[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(6): 61-67. doi: 10.6054/j.jscnun.2021093

加权基因共表达网络分析筛选胰腺癌肿瘤免疫相关基因

doi: 10.6054/j.jscnun.2021093
基金项目: 

国家自然科学基金项目 81772533

详细信息
    通讯作者:

    田雪梅,Email: xmtian69@163.com

  • 中图分类号: R735.9

Screening Genes Related with Tumor Immunity in Pancreatic Cancer with the WGCN Analysis

  • 摘要: 分析胰腺癌免疫浸润,以期寻找胰腺癌免疫治疗的潜在靶点. 利用加权基因共同表达网络分析方法和CIBERSORT算法分析TCGA数据库中胰腺癌的基因表达数据,识别与B细胞免疫浸润水平相关的基因模块. 通过共表达网络和PPI交互网络分析,确定了9个枢纽基因CD79BMYCBANK1TIMELESSCD19ATF3ITGALIKZF3RRAGB. 通过TIMER、Kaplan-Meier和差异表达基因等分析, 结果显示ITGAL在B细胞中高表达,在胰腺癌组织中显著上调,且该基因在胰腺癌中高表达与预后良好显著相关.
  • 图  1  模块特征基因与肿瘤浸润性免疫细胞相关性的热图

    注:ME为模块特征基因

    Figure  1.  The heat map of the association between module characteristic genes and tumor-infiltrating immune cells

    图  2  cyan模块内基因富集的生物学过程条目

    Figure  2.  The biological process terms of gene enrichment in the cyan module

    图  3  cyan模块内基因的蛋白互作网络图

    Figure  3.  The protein-protein interaction map network of genes in the cyan module

    图  4  枢纽基因与B细胞浸润程度的相关性

    注: TPM为Transcrios Per Million的缩写

    Figure  4.  The correlation between hub genes and the degree of B cell infiltration

    图  5  差异基因表达的火山图

    注:log2 FC代表表达量差异.

    Figure  5.  The volcano map of differentially expressed genes

    图  6  枢纽基因的Kaplan-Meier曲线

    注: (Hazard Ration)HR为风险因子.

    Figure  6.  The Kaplan-Meier curves of hub genes

    图  7  基于Oncomine数据集的基因表达的meta分析

    注:图中红色表示过表达,蓝色表示低表达.

    Figure  7.  A meta-analysis of gene expression from Oncomine datasets

  • [1] TAO J, YANG G, ZHOU W, et al. Targeting hypoxic tumor microenvironment in pancreatic cancer[J]. Journal of Hematology & Oncology, 2021, 14(1): 1-25. doi: 10.1186/s13045-020-01030-w
    [2] SUI H, MA N, WANG Y, et al. Anti-PD-1/PD-L1 therapy for non-small-cell lung cancer: toward personalized medicine and combination strategies[J]. Journal of Immunology Research, 2018(2): 1-17. http://downloads.hindawi.com/journals/jir/2018/6984948.pdf
    [3] TOPALIAN S, DRAKE C, PARDOLL D. Immune checkpoint blockade: a common denominator approach to cancer therapy[J]. Cancer Cell, 2015, 27(4): 450-461. doi: 10.1016/j.ccell.2015.03.001
    [4] TUMEH P C, HARVIEW C L, YEARLEY J H, et, al. PD-1 blockade induces responses by inhibiting adaptive immune resistance[J]. Nature, 2014, 515(7528): 568-571. doi: 10.1038/nature13954
    [5] WU T, DAI Y. Tumor microenvironment and therapeutic response[J]. Cancer Letters, 2017, 387(2): 61-68.
    [6] UDALL M, RIZZO M, KENNY J, et al. PD-L1 diagnostic tests: a systematic literature review of scoring algorithms and test-validation metrics[J]. Diagnostic Pathology, 2018, 13(1): 1-11. http://www.onacademic.com/detail/journal_1000040329081810_b9bd.html
    [7] BREMBES R M, Al-SHIBLI K M D, DONNEM T, et al. The role of tumor-infiltrating immune cells and chronic inflammation at the tumor site on cancer development, progression, and prognosis: emphasis on non-small cell lung cancer[J]. Journal of Thoracic Oncology, 2011, 6(4): 824-833. doi: 10.1097/JTO.0b013e3182037b76
    [8] LANGFELDER P, HORVATH S, LANGFELDER P, et al. WGCNA: an R package for weighted correlation network analysis[J]. BMC Bioinformatics, 2009, 9(559): 1-13. http://pdfs.semanticscholar.org/1ebe/33188f74b65fddd8679f5dbc8d243293bd80.pdf
    [9] LIU H, SUN Y, TIAN H, et al. Characterization of long non-coding RNA and messenger RNA profiles in laryngeal cancer by weighted gene co-expression network analysis[J]. Aging, 2019, 11(22): 10074-10099. doi: 10.18632/aging.102419
    [10] NEWMAN A M, LIU C L, GREEN M R, et al. Robust enumeration of cell subsets from tissue expression profiles[J]. Nature Methods, 2015, 12(5): 453-457. doi: 10.1038/nmeth.3337
    [11] ZHOU Y, ZHOU B, PACHE L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J]. Nature Communications, 2019, 10(1): 1-10. doi: 10.1038/s41467-018-07882-8
    [12] SZKLARCZYK D, GABLE A L, LYON D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Research, 2019, 47(D1): D607-D613. doi: 10.1093/nar/gky1131
    [13] SHANNON P, MARKIEL A, OZIER O, et al. CYTOSCAPE: a software environment for integrated models of biomolecular interaction networks[J]. Genome Research, 2003, 13(11): 2498-2504. doi: 10.1101/gr.1239303
    [14] LI T, FAN J, WANG B, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells[J]. Cancer Research, 2017, 77(21): e108-e110. doi: 10.1158/0008-5472.CAN-17-0307
    [15] LI B, SEVERSON E, PIGNON J C, et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy[J]. Genome Biology, 2016, 17(1): 174-190. doi: 10.1186/s13059-016-1028-7
    [16] GAUTIER L, COPE L, BOLSTAD B M, et al. Affy-analysis of Affymetrix GeneChip data at the probe level[J]. Bioinformatics, 2004, 20(3): 307-315. doi: 10.1093/bioinformatics/btg405
    [17] GOEL M K, KHANNA P, KISHORE J. Understanding survival analysis: Kaplan-Meier estimate[J]. International Journal of Ayurveda Research, 2010, 1(4): 274-278. doi: 10.4103/0974-7788.76794
    [18] RHODES D R, KALYANA-SUNDARAM S, MAHAVISNO V, et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18, 000 cancer gene expression profiles[J]. Neoplasia, 2007, 9(2): 166-180. doi: 10.1593/neo.07112
    [19] KUNK P R, BAUER T W, SLINGLUFF C L, et al. From bench to bedside a comprehensive review of pancreatic cancer immuno therapy[J]. Journal for Immunotherapy of Cancer, 2016, 4: 1-12. doi: 10.1186/s40425-015-0105-x
    [20] CHEN W, ZHANG W, WU R, et al. Identification of biomarkers associated with histological grade and prognosis of gastric cancer by coexpression network analysis[J]. Oncology Letters, 2019, 18(5): 5499-5507.
    [21] YAO Q, SONG Z, WANG B, et al. Identifying key genes and functionally enriched pathways in sjgren's syndrome by weighted gene co-expression network analysis[J]. Frontiers in Genetics, 2019, 10(11): 1142-1152. http://www.ncbi.nlm.nih.gov/pubmed/31798636
    [22] CABRITA R, LAUSS M, SANNA A, et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma[J]. Nature, 2020, 577(7791): 561-565. doi: 10.1038/s41586-019-1914-8
    [23] HELMINK B A, REDDY S M, GAO J, et al. B cells and tertiary lymphoid structures promote immunotherapy response[J]. Nature, 2020, 577(7791): 1-7. http://www.nature.com/articles/s41586-019-1922-8/
    [24] BLEIJS D A, BINNERTS M E, VLIET S, et al. Low-affinity LFA-1/ICAM-3 interactions augment LFA-1/ICAM-1-mediated T cell adhesion and signaling by redistribution of LFA-1[J]. Journal of Cell Science, 2000, 113(3): 391-400. doi: 10.1242/jcs.113.3.391
    [25] CARRASCO Y R, FLEIRE S J, CAMERON T, et al. LFA-1/ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell adhesion and synapse formation[J]. Immunity, 2004, 20(5): 589-599. doi: 10.1016/S1074-7613(04)00105-0
    [26] LIU Y X, ZHANG F, YAO Q M, et al. Expression of CD11a in lymphocyte subpopulation in immune thrombocytopenia[J]. International Journal of Clinical & Experimental Pathology, 2015, 8(12): 15642-15651. http://europepmc.org/articles/PMC4730046?pdf=render
    [27] TEMPIA-CALIERA A A, HORVATH L Z, ZIMMERMANN A, et al. Adhesion molecules in human pancreatic cancer[J]. Journal of Surgical Oncology, 2010, 79(2): 93-100.
    [28] JENKINSON C, ELLIOTT V, MENON U, et al. Evaluation in pre-diagnosis samples discounts ICAM-1 and TIMP-1 as biomarkers for earlier diagnosis of pancreatic cancer[J]. Journal of Proteomics, 2015, 113(1): 400-402. http://core.ac.uk/download/pdf/21623553.pdf
  • 加载中
图(7)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  89
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-12
  • 网络出版日期:  2022-01-10
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回