留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甘蔗渣生物炭对亚甲基蓝的脱除性能

赵浩然 陈佳玲 张文博 郑伟 何少康 王光华 郭立 吴晓琴

赵浩然, 陈佳玲, 张文博, 郑伟, 何少康, 王光华, 郭立, 吴晓琴. 甘蔗渣生物炭对亚甲基蓝的脱除性能[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 50-60. doi: 10.6054/j.jscnun.2021092
引用本文: 赵浩然, 陈佳玲, 张文博, 郑伟, 何少康, 王光华, 郭立, 吴晓琴. 甘蔗渣生物炭对亚甲基蓝的脱除性能[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 50-60. doi: 10.6054/j.jscnun.2021092
ZHAO Haoran, CHEN Jialing, ZHANG Wenbo, ZHENG Wei, HE Shaokang, WANG Guanghua, GUO Li, WU Xiaoqin. The Performance of Bagasse-based Activated Carbon in Methylene Blue Removal[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(6): 50-60. doi: 10.6054/j.jscnun.2021092
Citation: ZHAO Haoran, CHEN Jialing, ZHANG Wenbo, ZHENG Wei, HE Shaokang, WANG Guanghua, GUO Li, WU Xiaoqin. The Performance of Bagasse-based Activated Carbon in Methylene Blue Removal[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(6): 50-60. doi: 10.6054/j.jscnun.2021092

甘蔗渣生物炭对亚甲基蓝的脱除性能

doi: 10.6054/j.jscnun.2021092
基金项目: 

国家自然科学基金项目 22002114

国家重点研发计划项目 2017YFB0304303

武汉市科技局项目 2018060401011311

详细信息
    通讯作者:

    陈佳玲,Email: chenjialing@wust.edu.cn

    吴晓琴,Email: wuxiaoqin@wust.edu.cn

  • 中图分类号: O647.33

The Performance of Bagasse-based Activated Carbon in Methylene Blue Removal

  • 摘要: 以甘蔗渣为原料,采用氯化锌活化法制备了一系列具有不同ZnCl2浸渍比(ZnCl2与甘蔗渣的质量比1~6)的甘蔗渣生物炭样品,用于亚甲基蓝(MB)的脱除研究. X射线衍射(XRD)、扫描电子显微镜(SEM)和N2吸附-脱附(BET)的分析结果表明:与商业活性炭相比,甘蔗渣生物炭的灰分更少,表面孔结构更丰富,具有更大的比表面积和孔容积. 甘蔗渣生物炭样品的孔道结构与浸渍比有关,适当提高浸渍比有利于介孔的形成,浸渍比为4的ZnCl2-4-500-1样品具有最高的介孔率(75%). 与其他样品相比,ZnCl2-4-500-1在宽的温度区间(25~65 ℃)和pH范围(1~9)内均表现出接近100%的MB吸附率,具有最优异的MB脱除性能,说明介孔率的提高有利于MB的吸附. 孔径分布表明:ZnCl2-4-500-1由于存在大量孔径分布在1.36 nm的孔而具有优异的MB吸附性能,符合与MB分子直径有关的吸附理论. X射线光电子能谱(XPS)分析结果表明:ZnCl2-4-500-1具有最高的氮含量以及较高的-OH和C=O官能团的含量,这也是其具有最优异MB脱除性能的重要原因. 等温吸附实验结果表明:ZnCl2-4-500-1对MB的吸附过程符合Langmuir等温吸附模型,在25 ℃下对MB的最大吸附量为1 428.6 mg/g. 此外,ZnCl2-4-500-1在MB吸附-脱附循环5次时仍保持着80%以上的吸附率,对苯胺蓝和碱性红-46 (X-GRL)也表现出优异的脱除性能,说明该材料是一种优秀的染料废水脱色生物质活性炭材料.
  • 图  1  不同炭材料对MB的吸附性能

    Figure  1.  The MB adsorption properties of different carbon materials

    图  2  不同炭材料对MB的吸附率随温度的变化

    Figure  2.  The changes of adsorption ratios of different carbon materials with temperature

    图  3  不同炭材料对MB的吸附率随pH的变化

    Figure  3.  The changes of adsorption ratios of different carbon materials with pH

    图  4  ZnCl2-1-500-1的Zeta电位随pH的变化

    Figure  4.  The changes of zeta potential of ZnCl2-1-500-1 with pH

    图  5  不同样品的XRD图谱

    Figure  5.  The XRD spectra of different samples

    图  6  不同样品的SEM图

    Figure  6.  The SEM images of different samples

    图  7  不同样品的N2吸附等温线

    Figure  7.  The N2 adsorption isotherms of different samples

    图  8  不同样品的孔径分布

    Figure  8.  The pore size distribution of different samples

    图  9  甘蔗渣生物炭和商业活性炭的XPS谱

    Figure  9.  The XPS spectra of bagasse-based activated carbon and commercial carbon

    图  10  甘蔗渣生物质炭的N 1s XPS谱

    Figure  10.  The N 1s XPS spectra of bagasse-based activated carbon

    图  11  ZnCl2-4-500-1对MB的Langmuir、Freundlich等温吸附拟合结果

    Figure  11.  The fitting results of Langmuir and Freundlich isothermal adsorption of MB on ZnCl2-4-500-1

    图  12  ZnCl2-4-500-1的循环吸附性能

    Figure  12.  The cyclic adsorption performance of ZnCl2-4-500-1

    图  13  ZnCl2-4-500-1对不同偶氮阳离子染料的吸附性能

    Figure  13.  The adsorption properties of ZnCl2-4-500-1 for different azo cationic dyes

    表  1  不同浸渍比活性炭和商业活性炭的孔结构数据

    Table  1.   The pore structure data of activated carbon with different impregnation ratios and commercial carbon

    样品 比表面积/(m2·g-1) 孔容积/(cm3·g-1) 介孔率/% 平均孔径/nm
    总孔 微孔 总孔 微孔 介孔
    ZnCl2-1-500-1 1 602 1 456 0.752 0.644 0.108 14 2.45
    ZnCl2-2-500-1 1 816 1 339 1.027 0.540 0.487 47 2.55
    ZnCl2-4-500-1 1 822 1 111 1.997 0.491 1.506 75 4.10
    ZnCl2-6-500-1 1 531 1 114 1.420 0.493 0.927 65 3.87
    商业活性炭 664 609 0.364 0.319 0.045 12 2.76
    下载: 导出CSV

    表  2  各活性炭样品表面元素的质量分数

    Table  2.   The mass fraction of surface elements of each activated carbon sample %

    样品 w(C) w(O) w(N) w(Zn) w(S)
    ZnCl2-1-500-1 89.65 6.26 3.87 0.11 0.11
    ZnCl2-4-500-1 88.32 7.22 4.25 0.13 0.09
    商业活性炭 89.94 8.84 0.91 0.12 0.19
    下载: 导出CSV

    表  3  各样品C 1s、O 1s XPS谱中拟合峰的面积占比

    Table  3.   The area percentages of fitting peaks in C 1s and O 1s XPS spectra of each sample

    元素轨道 结合能/eV 官能团 峰面积百分比/%
    ZnCl2-1-500-1 ZnCl2-4-500-1 商业活性炭
    C 1s 284.8 C—C 69.19 62.10 72.87
    285.8 C—O—R 19.51 19.44 12.13
    287.7 C=O 5.76 12.26 6.07
    290.8 O—C=O 5.54 6.20 8.93
    O 1s 531.1 化学吸附氧 19.75 19.99 23.36
    532.7 -OH 42.87 51.33 43.97
    534.2 C—O 21.97 16.80 23.28
    535.1 R—O—C=O 15.41 11.88 9.39
    注:峰面积百分比等于单峰积分面积相对于拟合曲线积分总面积的百分比.
    下载: 导出CSV

    表  4  各样品N 1s XPS谱中拟合峰的面积占比

    Table  4.   The area percentages of fitting peaks in N 1s XPS spectra of each sample

    样品 峰面积占比/%
    C—N=C(399.0 eV) 吡啶氮(400.1 eV) 季氮(402.4 eV)
    ZnCl2-1-500-1 37.16 50.76 12.08
    ZnCl2-4-500-1 31.93 56.56 11.51
    下载: 导出CSV

    表  5  ZnCl2-4-500-1的等温吸附模型拟合参数

    Table  5.   The fitting parameters of isothermal adsorption model for ZnCl2-4-500-1

    模型 参数
    Langmuir qmax/(mg·g-1) 1 428.6
    KL/(L·g-1) 0.35
    R2 0.992 9
    Freundlich KF(mg·g-1) 649.3
    1/n 0.158 7
    R2 0.949 3
    下载: 导出CSV

    表  6  不同吸附剂对MB的最大吸附量

    Table  6.   The maximum adsorption capacity of different adsorbents for MB

    吸附剂 吸附条件 ρ(MB)/(mg·L-1) 投加量/g V/mL qmax /(mg·g-1) 参考文献
    磁性铁纳米粒子 25 ℃,pH 10.5 20 0.010 20 90.90 [22]
    碳纳米管 20 ℃,pH 6 100 0.025 50 188.68 [23]
    石墨烯 25 ℃,pH 6 600 0.015 100 599.80 [24]
    硅藻土 20 ℃,pH 7 100~400 0.050 50 198.00 [25]
    煤基活性炭 30 ℃,pH 7 10 0.050 100 61.30 [26]
    椰壳活性炭 30 ℃,pH 7 100 0.200 200 200.01 [27]
    甘蔗渣活性炭 35 ℃,pH 7 150~550 0.100 50 213.00 [28]
    甘蔗渣活性炭 25 ℃,pH 7 100 0.010 50 1 428.60 本文
    下载: 导出CSV
  • [1] 淦述招, 巫国威, 宋海燕, 等. 介孔α-MnO2/蒙脱石复合材料对罗丹明B的催化降解性能[J]. 华南师范大学学报(自然科学版), 2018, 50(1): 44-48. doi: 10.6054/j.jscnun.2018017

    GAN S Z, WU G W, SONG H Y, et al. Catalytic degradation of Rhodamine B by mesoporous α-MnO2/montmorillonite composites[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(1): 44-48. doi: 10.6054/j.jscnun.2018017
    [2] SANTOSO E, EDIATI R, KUSUMAWATI Y, et al. Review on recent advances of carbon based adsorbent for methy-lene blue removal from waste water[J]. Materials Today Chemistry, 2020, 16: 100233/1-21. http://www.sciencedirect.com/science/article/pii/S2468519419302459
    [3] GUPTA V K, SUHA S. Application of low-cost adsorbents for dye removal-a review[J]. Journal of Environmental Management, 2009, 90(8): 2313-2342. http://www.onacademic.com/detail/journal_1000034585517410_6ac2.html
    [4] DANISH M, AHMAD T. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application[J]. Renewable and Sustainable Energy Reviews, 2018, 87: 1-21. doi: 10.1016/j.rser.2018.02.003
    [5] AHMAD A, MOHD-SETAPAR S H, CHUONG C S, et al. Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater[J]. RSC Advances, 2015, 5: 30801-30818. doi: 10.1039/C4RA16959J
    [6] 白立记, 苏秀娟, 林金娇, 等. 甘蔗渣生物质炭微波制备试验研究[J]. 江苏农业科学, 2020, 48(1): 274-277, 283.

    BAI L J, SU X J, LIN J J, et al. Experimental study on microwave preparation of bagasse based activated carbon[J]. Jiangsu Agricultural Sciences, 2020, 48(1): 274-277, 283.
    [7] CHIN K L, LEE C L, RASHID U, et al. Refining micropore capacity of activated carbon derived from coconut shell via deashing post-treatment[J]. Bioresources, 2020, 15(4): 7749-7769. doi: 10.15376/biores.15.4.7749-7769
    [8] LI C, XIA H, ZHANG L, et al. Kinetics, thermodyna-mics, and isotherm study on the removal of methylene blue dye by adsorption via copper modified activated carbon[J]. Research on Chemical Intermediates, 2018, 44(4): 2231-2250. doi: 10.1007/s11164-017-3225-8
    [9] BAEK S H, LEE H J, LEE S N. Thickness dependence of crystal and optical characterization on ZnO thin film grown by atomic layer deposition[J]. AIP Advances, 2018, 8(6): 065306/1-6. http://www.onacademic.com/detail/journal_1000040446684310_b8a9.html
    [10] BAYSAL M, BILGE K, YILMAZ B, et al. Preparation of high surface area activated carbon from waste-biomass of sunflower piths: kinetics and equilibrium studies on the dye removal[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 1702-1713. doi: 10.1016/j.jece.2018.02.020
    [11] 古可隆. 活性炭的应用(一)[J]. 林产化工通讯, 1999(4): 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-LCHG904.011.htm

    GU K L. Application of activated carbon(1)[J]. Communication of forest products and chemical industry, 1999(4): 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-LCHG904.011.htm
    [12] CALVO L F, OTERO M, MORAN A, et al. Upgrading sewage sludges for adsorbent preparation by different treatments[J]. Bioresource Technology, 2001, 80(2): 143-148. doi: 10.1016/S0960-8524(01)00079-7
    [13] LI L, LIAN Z, MENG X, et al. Porous carbon spheres derived from waste ion-exchange resins and research on adsorption of methylene blue[J]. Journal of Environmental Engineering, 2020, 146(7): 7749-7769. doi: 10.1061/%28ASCE%29EE.1943-7870.0001718
    [14] MAHMOODI N M, TAGHIZADEH M, TAGHIZADEH A. Mesoporous activated carbons of low-cost agricultural bio-wastes with high adsorption capacity: preparation and artificial neural network modeling of dye removal from single and multicomponent (binary and ternary) systems[J]. Journal of Molecular Liquids, 2018, 269: 217-228. doi: 10.1016/j.molliq.2018.07.108
    [15] EGBOSIUBA T C, ABDULKAREEM A S, KOVO A S, et al. Ultrasonic enhanced adsorption of methylene blue onto the optimized surface area of activated carbon: adsorption isotherm, kinetics and thermodynamics[J]. Chemical Engineering Research and Design, 2020, 153: 315-336. doi: 10.1016/j.cherd.2019.10.016
    [16] FU J, CHEN Z, WANG M, et al. Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis[J]. Chemical Engineering Journal, 2015, 259: 53-61. doi: 10.1016/j.cej.2014.07.101
    [17] SAHU S, PAHI S, TRIPATHY S, et al. Adsorption of methylene blue on chemically modified lychee seed biochar: dynamic, equilibrium, and thermodynamic study[J]. Journal of Molecular Liquids, 2020, 315: 113743/1-11. http://www.sciencedirect.com/science/article/pii/S016773222032599X
    [18] ZHANG Z J, CUI P, CHEN X Y, et al. The production of activated carbon from cation exchange resin for high-performance supercapacitor[J]. Journal of Solid State Electrochemistry, 2013, 17(6): 1749-1758. doi: 10.1007/s10008-013-2039-x
    [19] DU C, YANG H, WU Z, et al. Microwave-assisted preparation of almond shell-based activated carbon for methylene blue adsorption[J]. Green Processing and Synthesis, 2016, 5(4): 395-406. http://www.onacademic.com/detail/journal_1000039062270310_f03c.html
    [20] CAZETTA A L, JUNIOR O P, VARGAS A M M, et al. Thermal regeneration study of high surface area activated carbon obtained from coconut shell: characterization and application of response surface methodology[J]. Journal of Analytical and Applied Pyrolysis, 2013, 101: 53-60. doi: 10.1016/j.jaap.2013.02.013
    [21] REN B, MIAO J, XU Y, et al. A grape-like N-doped carbon/CuO-Fe2O3 nanocomposite as a highly active heterogeneous Fenton-like catalyst in methylene blue degradation[J]. Journal of Cleaner Production, 2019, 240: 118143/1-10. http://www.sciencedirect.com/science/article/pii/S0959652619330136
    [22] ABKENAR S D, KHOOBI M, TARASI R, et al. Fast removal of methylene blue from aqueous solution using magnetic-modified Fe3O4 nanoparticles[J]. Journal of Environmental Engineering, 2014, 141(1): 04014049/1-12. doi: 10.1061/%28ASCE%29EE.1943-7870.0000878
    [23] LI Y, DU Q, LIU T, et al. Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes[J]. Chemical Engineering Research and Design, 2013, 91(2): 361-368. doi: 10.1016/j.cherd.2012.07.007
    [24] HAN Y, XUE T, ZHEN Y, et al. Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue[J]. Journal of hazardous materials, 2014, 268: 191-198. doi: 10.1016/j.jhazmat.2014.01.015
    [25] AL-GHOUTI M A, KHRAISHEH M, ALLEN S J, et al. The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth[J]. Journal of Environmental Management, 2003, 69(3): 229-238. http://www.onacademic.com/detail/journal_1000034584272710_9667.html
    [26] PUREVSUREN B, LIOU Y H, DAVAAJAV Y, et al. Investigation of adsorption of methylene blue from aqueous phase onto coal-based activated carbons[J]. Journal of the Chinese Institute of Engineers, 2017, 40(4): 355-360. doi: 10.1080/02533839.2017.1308273
    [27] ISLAM M A, AHMED M J, KHANDAY W A, et al. Mesoporous activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption[J]. Journal of Environmental Management, 2017, 203: 237-244. http://www.ncbi.nlm.nih.gov/pubmed/28081490
    [28] 贾佳祺, 李坤权, 张雨轩, 等. 磷酸微波活化多孔生物质炭对亚甲基蓝的吸附特性[J]. 环境工程学报, 2014, 8(1): 92-97. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201401019.htm

    JIA J Q, LI K Q, ZHANG Y X, et al. Adsorption characteristics of methylene blue onto biomass-activation[J]. Chinese Journal of Environmental Engineering, 2014, 8(1): 92-97. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201401019.htm
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  86
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-17
  • 网络出版日期:  2022-01-10
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回