留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环状碳酸酯的固载型离子液体催化合成

卢金凯 张梦 初秉宪 金理健 肖健泽 李斌 董丽辉 范闽光

卢金凯, 张梦, 初秉宪, 金理健, 肖健泽, 李斌, 董丽辉, 范闽光. 环状碳酸酯的固载型离子液体催化合成[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 43-49. doi: 10.6054/j.jscnun.2021091
引用本文: 卢金凯, 张梦, 初秉宪, 金理健, 肖健泽, 李斌, 董丽辉, 范闽光. 环状碳酸酯的固载型离子液体催化合成[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 43-49. doi: 10.6054/j.jscnun.2021091
LU Jinkai, ZHANG Meng, CHU Bingxian, JIN Lijian, XIAO Jianze, LI Bin, DONG Lihui, FAN Minguang. The Synthesis of Cyclic Carbonate Catalyzed by Immobilized Ionic Liquid[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(6): 43-49. doi: 10.6054/j.jscnun.2021091
Citation: LU Jinkai, ZHANG Meng, CHU Bingxian, JIN Lijian, XIAO Jianze, LI Bin, DONG Lihui, FAN Minguang. The Synthesis of Cyclic Carbonate Catalyzed by Immobilized Ionic Liquid[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(6): 43-49. doi: 10.6054/j.jscnun.2021091

环状碳酸酯的固载型离子液体催化合成

doi: 10.6054/j.jscnun.2021091
基金项目: 

国家自然科学基金项目 21968002

广西石化资源加工及过程强化技术重点实验室项目 2019k006

详细信息
    通讯作者:

    范闽光,Email: fanmg@gxu.edu.cn

  • 中图分类号: O643.32

The Synthesis of Cyclic Carbonate Catalyzed by Immobilized Ionic Liquid

  • 摘要: 通过烷基化反应和简单的一锅法将醇胺离子液体(TEA)嫁接到氯甲基聚苯乙烯(PS-Cl)微球上,将形成的嫁接型离子液体催化剂(PS-[TEA]I)用于催化CO2和环氧化物生成环状碳酸酯的反应. 采用傅里叶变换红外光谱(FT-IR)和扫描电子显微镜(SEM)表征催化剂的结构和形貌,采用X射线光电子能谱(XPS)、元素分析(EA)和热重分析(TGA)研究了醇胺离子液体的嫁接量和热稳定性. 在环加成反应中,该催化剂无需溶剂和助催化剂,在催化剂用量为0.10 g、温度为120 ℃、CO2压力为2 MPa以及反应时间为4 h的条件下,碳酸丙烯脂(PC)的产率达到93.30%,并且反应后容易分离,可重复使用. 最后提出了羟基形成的氢键可激活环氧化物和I-亲核进攻促进开环的反应机理.
  • 图  1  催化剂的制备方法

    Figure  1.  The synthesis of catalyst

    图  2  PS-Cl和PS-[TEA]I的FI-IR谱

    Figure  2.  The FI-IR spectra of PS-Cl and PS-[TEA]I

    图  3  PS-Cl和PS-[TEA]I的SEM图

    Figure  3.  The SEM images of PS-Cl and PS-[TEA]I

    图  4  PS-Cl和PS-[TEA]I的XPS能谱

    Figure  4.  The XPS spectra of PS-Cl and PS-[TEA]I

    图  5  PS-Cl和PS-[TEA]I的TGA曲线

    Figure  5.  The TGA curves of PS-Cl and PS-[TEA]I

    图  6  催化剂用量对PC产率的影响

    Figure  6.  The effect of catalyst amount on PC yield

    图  7  反应时间对PC产率的影响

    Figure  7.  The effect of reaction time on PC yield

    图  8  CO2气压对PC产率的影响

    Figure  8.  The effect of CO2 pressure on PC yield

    图  9  反应温度对PC产率的影响

    Figure  9.  The effect of reaction temperature on PC yield

    图  10  PO可能发生的副反应

    Figure  10.  The possible side reactions of PO

    图  11  催化剂PS-[TEA]I的循环性能

    Figure  11.  The repeatability of catalyst PS-[TEA]I

    图  12  PS-[TEA]I催化的CO2与环氧化物环加成的反应机理

    Figure  12.  The possible mechanism of PS-[TEA]I-catalyzed cycloaddition reaction of CO2 and epoxide

    表  1  PS-Cl和PS-[TEA]I的表面元素XPS分析结果

    Table  1.   The XPS analysis results of the elements on the surface of PS-Cl and PS-[TEA]I

    样品 w(C)/% w(Cl)/% w(N)/% w(I)/% w(O)/%
    PS-Cl 98.05 1.95 0 0 0
    PS-[TEA]I 85.99 1.35 2.25 0.34 10.06
    下载: 导出CSV

    表  2  各种样品的元素分析数据

    Table  2.   The data of elemental analysis of various samples

    样品 w(C)/% w(N)/% 嫁接量/(mmol·g-1) 嫁接率/%
    PS-Cl 87.77 0
    PS-[TEA]I 76.57 1.50 1.07 19.77
    PS-[TEA]I(循环5次后) 76.80 1.47 1.05 19.38
    下载: 导出CSV

    表  3  不同催化剂对CO2与PO环加成反应的催化性能

    Table  3.   The performance of different catalysts for the cycloaddition reaction of CO2 and PO

    实验编号 催化剂 PC产率/% PC选择性/%
    1 痕量
    2 TEA <5.00 100
    3 PS-Cl <3.00 100
    4 PS-[TEA]I 93.30 99
    5 PS-[TEA]Br 92.12 99
    6 PS-[TEA]BF4 24.82 98
    7 PS-[TEA]Cl 73.08 99
    注:PO为17 mmol,催化剂的摩尔分数为0.63%,反应温度为120 ℃,CO2气压为2 MPa,反应时间为4 h.
    下载: 导出CSV
  • [1] BHANJA P, MODAK A, BHAUMIK A. Porous organic polymers for CO2 storage and conversion reactions[J]. ChemCatChem, 2019, 11(1): 244-257. doi: 10.1002/cctc.201801046
    [2] WALDEMAR S, SHOUBHIK D. CO2-Catalyzed/promoted transformation of organic functional groups[J]. Tetrahedron Letters, 2018, 59(43): 3821-3828. doi: 10.1016/j.tetlet.2018.08.033
    [3] BONDARENKO G N, DVURECHENSKAYA E G, GANINA O G, et al. Solvent-free synthesis of cyclic carbonates from CO2 and epoxides catalyzed by reusable alumina-supported zinc dichloride[J]. Applied Catalysis B: Environmental, 2019, 254: 380-390. doi: 10.1016/j.apcatb.2019.04.024
    [4] LAN D H, FAN N, WANG Y, et al. Recent advances in metal-free catalysts for the synthesis of cyclic carbonates from CO2 and epoxides[J]. Chinese Journal of Catalysis, 2016, 37(6): 826-845. doi: 10.1016/S1872-2067(15)61085-3
    [5] 盛倩, 薛建明. 室温离子液体在受限区域内的研究进展[J]. 华南师范大学学报(自然科学版), 2015, 47(2): 27-31. doi: 10.6054/j.jscnun.2014.12.014

    SHENG Q, XUE J M. The research progress of room temperature ionic liquids in confined geometries[J]. Journal of South China Normal University (Natural Science Edition), 2015, 47(2): 27-31. doi: 10.6054/j.jscnun.2014.12.014
    [6] MENG Z, CHU B, LI G, et al. Triethanolamine-modified mesoporous SBA-15: Facile one-pot synthesis and its catalytic application for cycloaddition of CO2 with epoxides under mild conditions[J]. Microporous and Mesoporous Materials, 2018: 363-372. http://www.sciencedirect.com/science/article/pii/S1387181118304918
    [7] ZHANG X, SU D, XIAO L, et al. Immobilized protic ionic liquids: efficient catalysts for CO2 fixation with epoxides[J]. Journal of CO2 Utilization, 2017, 17: 37-42. doi: 10.1016/j.jcou.2016.11.005
    [8] ZHANG X, GENG W, YUE C, et al. Multilayered supported ionic liquids bearing a carboxyl group: Highly efficient catalysts for chemical fixation of carbon dioxide[J]. Journal of Environmental Chemical Engineering, 2016, 4(2): 2565-2572. doi: 10.1016/j.jece.2016.05.001
    [9] WU S, TENG C, CAI S, et al. Triphenylphosphine-based functional porous polymer as an efficient heterogeneous catalyst for the synthesis of cyclic carbonates from CO2[J]. Nanoscale Research Letters, 2017, 12(1): 609/1-9. doi: 10.1186%2Fs11671-017-2376-2.pdf
    [10] XU J, LI S, WANG F, et al. Efficient and Enhanced Adsorption of Methylene Blue on Triethanolamine-Modified Graphene Oxide[J]. Journal of Chemical & Engineering Data, 2019, 64(4): 1816-1825. http://www.onacademic.com/detail/journal_1000042284365599_9470.html
    [11] LUDWIG V, LUDWIG Z, RODRIGUES M M, et al. Analysis by Raman and Infrared Spectroscopy Combined With Theoretical Studies on the Identification of Plasticizer in PVC Films[J]. Vibrational Spectroscopy, 2018, 98: 134-138. doi: 10.1016/j.vibspec.2018.08.004
    [12] LEE S D, KIM B M, KIM D W, et al. Synthesis of cyclic carbonate from carbon dioxide and epoxides with polystyrene-supported quaternized ammonium salt catalysts[J]. Applied Catalysis A: General, 2014, 486: 69-76. doi: 10.1016/j.apcata.2014.08.029
    [13] ESKANDARLOO H, GODEC M, ARSHADI M, et al. Multi-porous quaternized chitosan/polystyrene microbeads for scalable, efficient heparin recovery[J]. Chemical Engineering Journal, 2018, 348: 399-408. doi: 10.1016/j.cej.2018.04.099
    [14] BISWAS S, KHATUN R, SENGUPIA M, et al. Polystyrene supported Zinc complex as an efficient catalyst for cyclic carbonate formation via CO2 fixation under atmospheric pressure and organic carbamates production[J]. Molecular Catalysis, 2018, 452: 129-137. doi: 10.1016/j.mcat.2018.04.009
    [15] LIU M, LI X, LIANG L, et al. Protonated triethanolamine as multi-hydrogen bond donors catalyst for efficient cycloaddition of CO2 to epoxides under mild and cocatalyst-free conditions[J]. Journal of CO2 Utilization, 2016, 16: 384-390. doi: 10.1016/j.jcou.2016.10.004
    [16] LAN D H, FAN N, WANG Y, et al. Recent advances in metal-free catalysts for the synthesis of cyclic carbonates from CO2 and epoxides[J]. Chinese Journal of Catalysis, 2016, 37(6): 826-845. doi: 10.1016/S1872-2067(15)61085-3
    [17] ALVES M, GRIGNARD B, MEREAU R, et al. Organocatalyzed coupling of carbon dioxide with epoxides for the synthesis of cyclic carbonates: catalyst design and mechanistic studies[J]. Catalysis Science and Technology, 2017, 7(13): 2651-2684. doi: 10.1039/C7CY00438A
    [18] JIAN S, CHENG W, WEI F, et al. Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2[J]. Catalysis Today, 2009, 148(3/4): 361-367. http://www.onacademic.com/detail/journal_1000034057252310_d949.html
    [19] WANG J Q, KONG D L, CHEN J Y, et al. Synthesis of cyclic carbonates from epoxides and carbon dioxide over silica-supported quaternary ammonium salts under supercritical conditions[J]. Journal of Molecular Catalysis A: Chemical, 2006, 249(1/2): 143-148. http://www.onacademic.com/detail/journal_1000034589702910_12ca.html
    [20] DAI W, ZHANG Y, TAN Y, et al. Reusable and efficient polymer nanoparticles grafted with hydroxyl-functionalized phosphonium-based ionic liquid catalyst for cycloaddition of CO2 with epoxides[J]. Applied Catalysis A: General, 2016, 514: 43-50. doi: 10.1016/j.apcata.2016.01.004
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  53
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-15
  • 网络出版日期:  2022-01-10
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回