留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔Ti3C2Tx/SnSe复合材料的制备及其储钾性能

赵杰 李朝林 陈刚 吉飞 慎义勇 彭娟

赵杰, 李朝林, 陈刚, 吉飞, 慎义勇, 彭娟. 多孔Ti3C2Tx/SnSe复合材料的制备及其储钾性能[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 28-33. doi: 10.6054/j.jscnun.2021089
引用本文: 赵杰, 李朝林, 陈刚, 吉飞, 慎义勇, 彭娟. 多孔Ti3C2Tx/SnSe复合材料的制备及其储钾性能[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 28-33. doi: 10.6054/j.jscnun.2021089
ZHAO Jie, LI Chaolin, CHEN Gang, JI Fei, SHEN Yiyong, PENG Juan. The Synthesis of Porous Ti3C2Tx/SnSe Composite and Its Potassium Storage Performance[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(6): 28-33. doi: 10.6054/j.jscnun.2021089
Citation: ZHAO Jie, LI Chaolin, CHEN Gang, JI Fei, SHEN Yiyong, PENG Juan. The Synthesis of Porous Ti3C2Tx/SnSe Composite and Its Potassium Storage Performance[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(6): 28-33. doi: 10.6054/j.jscnun.2021089

多孔Ti3C2Tx/SnSe复合材料的制备及其储钾性能

doi: 10.6054/j.jscnun.2021089
基金项目: 

国家自然科学基金项目 516781821

详细信息
    通讯作者:

    李朝林,Email: lichaolin@hitsz.edu.cn

  • 中图分类号: O646

The Synthesis of Porous Ti3C2Tx/SnSe Composite and Its Potassium Storage Performance

  • 摘要: 采用原位氧化-刻蚀法和水热合成法制备了多孔MXene复合材料(Ti3C2Tx/SnSe),并对所制备的材料进行了结构表征与电化学性能测试. 结果表明:在0.05 A/g的电流密度下,多孔Ti3C2Tx/SnSe电极具有381.9 mA ·h/g的储钾容量,而相同情况下SnSe电极的比容量仅为119.2 mA ·h/g. 在1 A/g的电流密度下,多孔Ti3C2Tx /SnSe电极的初始可逆比容量为118.5 mA ·h/g,循环500次的比容量仍保持在35.4 mA ·h/g. 多孔Ti3C2Tx/SnSe电极材料优异的电化学性能得益于多孔Ti3C2Tx材料的高导电性,它不仅缓解了SnSe的体积膨胀,而且为离子的转移提供了良好的通路.
  • 图  1  多孔Ti3C2Tx/SnSe复合材料的合成示意图

    Figure  1.  The schematic diagram of the synthesis of porous Ti3C2Tx/SnSe composite

    图  2  多孔Ti3C2Tx/SnSe以及SnSe的XRD图谱

    Figure  2.  The XRD patterns of porous Ti3C2Tx/SnSe and SnSe

    图  3  样品的SEM图和TEM图

    Figure  3.  The SEM and TEM images of the samples

    图  4  0.05 A/g电流密度下的恒电流充放电曲线

    Figure  4.  The first three discharge/charge profiles at 0.05 A/g

    图  5  在0.05~2 A/g电流密度下的倍率性能

    Figure  5.  The rate performance at the current density from 0.05 to 2 A/g

    图  6  在1 A/g电流密度下循环性能和库伦效率

    Figure  6.  The cycle performance and coulomb efficiency of the samples at the current density of 1 A/g

    图  7  多孔Ti3C2Tx/SnSe电极的SEM图

    Figure  7.  The SEM images of the porous Ti3C2Tx/SnSe electrodes

    图  8  SnSe、Ti3C2Tx/SnSe和多孔Ti3C2Tx/SnSe电极的电化学阻抗曲线

    Figure  8.  The EIS curves of SnSe, Ti3C2Tx/SnSe and porous Ti3C2Tx/SnSe

  • [1] 杨稳稳, 周玉林, 王梦月, 等. 天然石墨表面自组装SnO2-FeO(OH)高容量锂离子电池负极[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 29-34. doi: 10.6054/j.jscnun.2021023

    YANG W W, ZHOU Y L, WANG M Y, et al. The self-assembled SnO2-FeO(OH) on natural graphite surface as a high-capacity anode for lithium ion batteries[J]. Journal of South China normal University(Natural Science Edition), 2021, 53(2): 29-34. doi: 10.6054/j.jscnun.2021023
    [2] 姜雯, 于振江, 王家钧, 等. 钾离子电池负极关键材料研究进展[J]. 电子元件与材料, 2020, 39(12): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DZAL202012002.htm

    JIANG W, YU Z J, WANG J J, et al. Research progress of key anode materials for potassium-ion batteries[J]. Electronic Components Materials, 2020, 39(12): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DZAL202012002.htm
    [3] 苏炽权, 汝强, 石正禄, 等. 生物炭负载金属硒化物复合材料的储锂性能[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 32-37. doi: 10.6054/j.jscnun.2019082

    SU C Q, RU Q, SHI Z L, et al. The lithium storage performance of biochar-loaded metal selenide composite material[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 32-37. doi: 10.6054/j.jscnun.2019082
    [4] WANG M, PENG A, XU H, et al. Amorphous SnSe quantum dots anchoring on graphene as high-performance anodes for battery/capacitor sodium ion storage[J]. Journal of Power Sources, 2020, 469: 228414/1-10. http://www.sciencedirect.com/science/article/pii/S0378775320307187
    [5] WANG W, LI P, ZHENG H, et al. Ultrathin layered SnSe nanoplates for low voltage, high-rate, and long-life alkali-ion batteries[J]. Small, 2017, 13: 1702228/1-7. https://pubmed.ncbi.nlm.nih.gov/29057606/
    [6] XU Z, ZHANG Z, ZHEN Z. MXene-based materials for electrochemical energy storage[J]. Journal of Energy Chemistry, 2018, 27(1): 73-85. doi: 10.1016/j.jechem.2017.08.004
    [7] ZHENG Y, LI L B, WANG D D, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2[J]. Materials Science and Engineering: B, 2015, 191: 33-40. doi: 10.1016/j.mseb.2014.10.009
    [8] LI K, LIANG M, WANG H, et al. 3D MXene architectures for efficient energy storage and conversion[J]. Advanced Functional Materials, 2020, 30: 2000842/1-22. http://www.cnki.com.cn/Article/CJFDTotal-NANO202010018.htm
    [9] HEMANTH N R, KANDASUBRAMANIAN B. Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting applications: a review[J]. Chemical Engineering Journal, 2020, 392: 123678/1-15. http://www.sciencedirect.com/science/article/pii/S1385894719330931
    [10] ZHAO R, DI H, WANG C, et al. Encapsulating ultrafine Sb nanoparticles in Na+ pre-intercalated 3D porous Ti3C2Tx MXene nanostructures for enhanced potassium storage performance[J]. ACS Nano, 2020, 14(10): 13938-13951. doi: 10.1021/acsnano.0c06360
    [11] 李佳慧, 张晶, 芮秉龙, 等. MXene及其复合材料在钠/钾离子电池中的应用[J]. 化学进展, 2019, 31(9): 1283-1292. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201909011.htm

    LI J H, ZHANG J, RUI B L, et al. Application of MXene and its composites in sodium/potassium ion batteries[J]. Progress in Chemistry, 2019, 31(9): 1283-1292. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201909011.htm
    [12] KANG S Z, JIA L, LI X, et al. Amine-free preparation of SnSe nanosheets with high crystallinity and their lithium storage properties[J]. Colloids and Surfaces: A Physicochemical and Engineering Aspects, 2012, 406: 1-5. http://www.onacademic.com/detail/journal_1000035370192410_2372.html
    [13] ZHAO X, WANG W, ZHEN H, et al. Yolk-shell structured SnSe as a high-performance anode for Na-ion batteries[J]. Inorganic Chemistry Frontiers, 2019, 6: 562-565. doi: 10.1039/C8QI01337C
    [14] CUI Y, XIE X, YANG R, et al. Cold pressing-built microreactors to thermally manipulate microstructure of MXene film as an anode for high-performance lithium-ion batteries[J]. Electrochemical Acta, 2019.305: 11-23. http://www.onacademic.com/detail/journal_1000041585371399_77de.html
    [15] XIONG D, SHI Y, YANG H Y. Rational design of MXene-based films for energy storage: progress, prospects[J]. Materials Today, 2021, 46: 183-211. http://www.sciencedirect.com/science/article/pii/S1369702120304569
    [16] VERMA R, DIDWAL P N, KIH S, et al. SnP3/carbon nanocomposite as an anode material for potassium-ion batteries[J]. ACS Applied Materials and Interfaces, 2019, 11(30): 26976-26984. doi: 10.1021/acsami.9b08088
    [17] XIA Z, CHEN X, CI H, et al. Designing N-doped graphene/ReSe2/Ti3C2 MXene heterostructure frameworks as promising anodes for high-rate potassium-ion batteries[J]. Journal of Energy Chemistry, 2020, 53: 155-162. http://www.sciencedirect.com/science/article/pii/S2095495620303417
    [18] SUN S, LI R, WANG W, et al. One-dimension coaxial cable-like MWCNTs/Sn4P3@C as anode materials with long-term durability for lithium ion batteries[J]. Inorganic Chemistry Frontiers, 2020, 7(14): 2651-2659. http://pubs.rsc.org/en/content/articlelanding/qi/2020/d0qi00373e
  • 加载中
图(8)
计量
  • 文章访问数:  319
  • HTML全文浏览量:  86
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-05
  • 网络出版日期:  2022-01-10
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回