留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缺陷石墨烯的可控制备及其室温湿敏性能

黄青武 周芃 曾大文 宋武林

黄青武, 周芃, 曾大文, 宋武林. 缺陷石墨烯的可控制备及其室温湿敏性能[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 23-27. doi: 10.6054/j.jscnun.2021088
引用本文: 黄青武, 周芃, 曾大文, 宋武林. 缺陷石墨烯的可控制备及其室温湿敏性能[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 23-27. doi: 10.6054/j.jscnun.2021088
HUANG Qingwu, ZHOU Peng, ZENG Dawen, SONG Wulin. The Controllable Synthesis of Defect Graphene and Its Humidity-sensing Property at Room Temperature[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(6): 23-27. doi: 10.6054/j.jscnun.2021088
Citation: HUANG Qingwu, ZHOU Peng, ZENG Dawen, SONG Wulin. The Controllable Synthesis of Defect Graphene and Its Humidity-sensing Property at Room Temperature[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(6): 23-27. doi: 10.6054/j.jscnun.2021088

缺陷石墨烯的可控制备及其室温湿敏性能

doi: 10.6054/j.jscnun.2021088
基金项目: 

湖北省自然科学基金项目 2020CFB664

华中科技大学实验技术研究项目 201946

华中科技大学实验技术研究项目 201755

华中科技大学实验技术研究项目 201444

详细信息
    通讯作者:

    黄青武,Email: qwhuang@hust.edu.cn

  • 中图分类号: O635.1

The Controllable Synthesis of Defect Graphene and Its Humidity-sensing Property at Room Temperature

  • 摘要: 利用活泼的金属钠还原廉价的糖类,成功实现了一种缺陷石墨烯的可控制备,该石墨烯材料在室温下表现出极佳的湿敏性能. 表征结果显示:蔗糖前驱体使石墨烯片层厚度增加到0.4 nm,并改变缺陷石墨烯表面的修饰基团及缺陷含量(摩尔分数). 蔗糖前驱体制备的缺陷石墨烯,其表面含氧基团的摩尔分数可达24.2%. 不同缺陷含量的石墨烯样品室温湿敏性能表现不同. 相比不加糖类的石墨烯样品,蔗糖前驱体制备的缺陷石墨烯室温湿敏性能最高可提升4.5倍. 研究结果可为石墨烯基材料在室温气敏探测方面的应用提供技术参考.
  • 图  1  DG、DGF和DGS石墨烯样品的SEM图

    Figure  1.  The SEM images of DG, DGF and DGS graphene samples

    图  2  DG、DGF和DGS石墨烯样品的XRD图谱、拉曼光谱及红外光谱

    Figure  2.  The XRD, Raman and FT-IR spectra of DG, DGF and DGS graphene samples

    图  3  DG、DGF和DGS石墨烯样品的XPS谱

    Figure  3.  The XPS spectra of DG, DGF and DGS graphene samples

    图  4  DG、DGF和DGS石墨烯样品在不同湿度条件下的湿敏性能

    Figure  4.  The humidity sensitivity of samples under different humidity conditions

    表  1  DG、DGF和DGS石墨烯样品的XPS谱分峰拟合结果

    Table  1.   The XPS peak fitting results of DG, DGS and DGF graphene samples %

    编号 官能团 DG DGF DGS
    C1 C=C 82.3 77.3 75.3
    C2 C—OH 11.4 16.2 18.7
    C3 C=O 6.3 6.5 6.0
    下载: 导出CSV
  • [1] NOVOSELOV K S, GEIM A K, MOROZOV S V. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666-669. doi: 10.1126/science.1102896
    [2] SCHEDIN F, GEIM A K, MOROZOV S V, et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, 6(9): 652-655. doi: 10.1038/nmat1967
    [3] 张灿鹏, 邵志刚. CO2和CO分子在五边形石墨烯表面的吸附行为[J]. 华南师范大学学报(自然科学版), 2019, 51(1): 11-15. doi: 10.6054/j.jscnun.2019003

    ZHANG C P, SHAO Z G. The adsorption behavior of CO2 and CO on penta-graphene[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(1): 11-15. doi: 10.6054/j.jscnun.2019003
    [4] BANHART F, KOTAKOSKI J, KRASHENINNIKOV A V. Structural defects in graphene[J]. ACS Nano, 2011, 5(1): 26-41. doi: 10.1021/nn102598m
    [5] 孙丰强, 许适溥. 石墨烯材料在气体传感器中的应用[J]. 华南师范大学学报(自然科学版), 2013, 45(6): 92-98. http://journal-n.scnu.edu.cn/article/id/3244

    SUN F Q, XU S B. Application of graphene material in gas sensor[J]. Journal of South China Normal University (Natural Science Edition), 2013, 45(6): 92-98. http://journal-n.scnu.edu.cn/article/id/3244
    [6] 孙丰强, 陈颖. 三维结构化石墨烯及其复合材料[J]. 华南师范大学学报(自然科学版), 2016, 48(5): 19-24. http://www.cnki.com.cn/Article/CJFDTotal-HNSF201605006.htm

    SUN F Q, CHEN Y. Three-dimentionally structured graphene and its composites[J]. Journal of South China Normal University(Natural Science Edition), 2016, 48(5): 19-24. http://www.cnki.com.cn/Article/CJFDTotal-HNSF201605006.htm
    [7] AO Z M, LI S, JIANG Q. Thermal stability of interaction between the CO molecules and the Al doped graphene[J]. Physical Chemistry Chemical Physics, 2009, 11(11): 1683-1687. doi: 10.1039/b812188e
    [8] ALLOUCHE A, FERRO Y. Dissociative adsorption of small molecules at vacancies on the graphite (0001) surface[J]. Carbon, 2006, 44(15): 3320-3327. doi: 10.1016/j.carbon.2006.06.014
    [9] ZHANG L S, WANG W D, LIANG X Q, et al. Characte-rization of partially reduced graphene oxide as room temperature sensor for H2[J]. Nanoscale, 2011, 3(6): 2458-2460. doi: 10.1039/c1nr10187k
    [10] CHOUCAIR M, THORDARSON P, STRIDE J A. Gram-scale production of graphene based on solvothermal synthesis and sonication[J]. Nature Nanotechnology, 2008, 4(1): 30-33. http://media.nature.com/original/nature-assets/nnano/journal/v4/n1/extref/nnano.2008.365-s1.pdf
    [11] HUANG Q, ZENG D, LI H, et al. Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites[J]. Nanoscale, 2012, 4(18): 5651-5658. doi: 10.1039/c2nr31131c
    [12] ZHANG J, WU C, LI T, et al. Highly sensitive and ultralow detection limit of room-temperature NO2 sensors using in-situ growth of PPy on mesoporous NiO nanosheets[J]. Organic Electronics, 2019, 77: 105504/1-9. http://www.sciencedirect.com/science/article/pii/S1566119919305312
    [13] SHEN J, HU Y, SHI M, et al. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets[J]. Chemistry of Materials, 2009, 21(15): 3514-3520. doi: 10.1021/cm901247t
    [14] LIAO K H, MITTAL A, BOSE S, et al. Aqueous only route toward graphene from graphite oxide[J]. ACS Nano, 2011, 5(2): 1253-1258. doi: 10.1021/nn1028967
    [15] AGARWAL V, ZETTERLUND P. Strategies for reduction of graphene oxide: a comprehensive review[J]. Chemical Engineering Journal, 2020, 405: 127018/1-29. http://www.sciencedirect.com/science/article/pii/S1385894720331466
    [16] MAGUREANU M, MANDACHE N B, RIZESCU C, et al. Engineering hydrogenation active sites on graphene oxide and N-doped graphene by plasma treatment[J]. Applied Catalysis B: Environmental, 2021, 287: 119962/1-11. http://www.sciencedirect.com/science/article/pii/S0926337321000886
    [17] MATTEVI C, EDA G, AGNOLI S, et al. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films[J]. Advanced Functional Materials, 2009, 19(16): 2577-2583. doi: 10.1002/adfm.200900166
    [18] DAN Y, LU Y, KYBERT N J, et al. Intrinsic response of graphene vapor sensors[J]. Nano Letters, 2009, 9(4): 1472-1475. doi: 10.1021/nl8033637
    [19] WANG C, WANG Y, YANG Z, et al. Review of recent progress on graphene-based composite gas sensors[J]. Ceramics International, 2021, 47(42): 16367-16384. http://www.sciencedirect.com/science/article/pii/S027288422100506X
    [20] KHAN N, NAWAZ A, ISLAM B, et al. Evaluating humidity sensing response of graphene quantum dots synthesized by hydrothermal treatment of glucose[J]. Nanotechnology, 2021, 32: 295504/1-16. http://www.ncbi.nlm.nih.gov/pubmed/33588387
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  54
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-19
  • 网络出版日期:  2022-01-10
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回