留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市地块土壤重金属污染的感应电磁法与高密度电阻率法分析

陆海建 邓一荣 邓达义 刘丽丽 赵岩杰 李朝晖

陆海建, 邓一荣, 邓达义, 刘丽丽, 赵岩杰, 李朝晖. 城市地块土壤重金属污染的感应电磁法与高密度电阻率法分析[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 15-22. doi: 10.6054/j.jscnun.2021087
引用本文: 陆海建, 邓一荣, 邓达义, 刘丽丽, 赵岩杰, 李朝晖. 城市地块土壤重金属污染的感应电磁法与高密度电阻率法分析[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 15-22. doi: 10.6054/j.jscnun.2021087
LU Haijian, DENG Yirong, DENG Dayi, LIU Lili, ZHAO Yanjie, LI Zhaohui. Analyzing Heavy Metal Pollution with the Induction Electromagnetic Method and the High-density Electrical Method in Urban Land[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(6): 15-22. doi: 10.6054/j.jscnun.2021087
Citation: LU Haijian, DENG Yirong, DENG Dayi, LIU Lili, ZHAO Yanjie, LI Zhaohui. Analyzing Heavy Metal Pollution with the Induction Electromagnetic Method and the High-density Electrical Method in Urban Land[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(6): 15-22. doi: 10.6054/j.jscnun.2021087

城市地块土壤重金属污染的感应电磁法与高密度电阻率法分析

doi: 10.6054/j.jscnun.2021087
基金项目: 

国家重点研发计划项目 2018YFC1800806

国家重点研发计划项目 2018YFC1800205

国家重点研发计划项目 2019YFC1803901

国家自然科学基金项目 U1911202

广东省科技创新战略专项资金项目 2019B121205004

广东省基础与应用基础研究重大项目 2019B030302013

详细信息
    通讯作者:

    邓一荣,Email: ecoyrdeng@163.com

  • 中图分类号: X53

Analyzing Heavy Metal Pollution with the Induction Electromagnetic Method and the High-density Electrical Method in Urban Land

  • 摘要: 联合采用感应电磁法和高密度电阻率法对城市污染地块土壤环境进行测评,以华南某典型重金属污染地块为研究对象,通过对重点区域开展电磁扫描,在二维空间刻画出潜在污染区域,然后利用高密度电阻率法进一步刻画污染深度和垂直污染范围. 研究区废渣堆放位置和污水处理池下游的0~8.0 m、3.5~10.5 m深度范围存在多个电阻率小于8 Ω·m的低电阻异常区(疑似重金属污染区域),其中低电阻异常区的砷(As)和铅(Pb)污染严重,最大质量分数分别达1 170.00、2 700.00 mg/kg. 结果表明:感应电磁法和高密度电阻率法联合探测污染地块重金属污染的方法具有较强的可行性,能初步表征重金属污染物的空间分布状况,进而指导后续靶向钻探布点和采样,为污染地块的精准化土壤污染状况调查与修复提供科学依据.
  • 图  1  物探测线布置图

    Figure  1.  The layout of geophysical exploration line

    图  2  不同频率电磁法探测区域的磁化率分布

    Figure  2.  The distribution of magnetic susceptibility in the area detected with the induced electromagnetic method at different frequencies

    图  3  高密度电阻率法对研究区勘探的电阻率剖面分布

    Figure  3.  The high-density electrical exploration profile in the study area

    图  4  研究区As、Pb的质量分数分布

    Figure  4.  The distribution of As and Pb contents in the study area

    图  5  研究区不同深度地下土壤的电阻率及重金属的质量分数

    Figure  5.  The resistivity of underground soil at different depths and mass fraction of heavy metals in the study area

    表  1  XRF超标倍数与对应物探结果统计

    Table  1.   The statistics of XRF exceeding standard ratio and the corresponding geophysical exploration results

    孔编号 深度/m XRF超标倍数 磁化率 电阻率/(Ω·m)
    S4 0~3 11.5 >700 <8
    S11 0~3 5.5 500~700 10~20
    4~7 12.3 >700 8~10
    S14 0~3 50~300 10~35
    S18 4~7 14.6 >700 <8
    8~12 300~500 8~10
    S22 0~3 50~300 10~35
    4~7 9.2 500~700 <8
    8~12 3.8 500~700 <8
    注:“—”表示测试结果未超筛选值.
    下载: 导出CSV

    表  2  土壤样品中污染物的探测结果

    Table  2.   The results of pollutant detection in soil samples

    孔编号 深度/m w(As)/(mg·kg-1) w(Pb)/(mg·kg-1) 磁化率 电阻率/(Ω·m)
    S4 0.1 844 1 900 >700 <8
    0.5 631 2 010 >700 <8
    S9 2.0 1 170 2 700 >700 <8
    3.8 123 715 >700 <8
    S22 5.5 501 47 500~700 <8
    6.0 559 823 500~700 <8
    8.0 236 531 500~700 <8
    S23 3.5 94 266 500~650 8~10
    5.4 265 81 500~650 8~10
    S8 0.1 32 43 50~300 10~35
    1.5 26 30 50~300 10~35
    S14 0.1 21 38 50~300 10~35
    1.0 14 26 50~300 10~35
    3.0 19 27 50~300 10~35
    下载: 导出CSV
  • [1] LI X, JIAO W, XIAO R, et al. Contaminated sites in China: countermeasures of provincial governments[J]. Journal of Cleaner Production, 2017, 147: 485-496. doi: 10.1016/j.jclepro.2017.01.107
    [2] 邓一荣, 刘丽丽, 李韦钰, 等. 基于健康风险评估的棕地再开发利用控规优化研究[J]. 生态经济, 2019(8): 223-229. https://www.cnki.com.cn/Article/CJFDTOTAL-STJJ201908039.htm

    DENG Y R, LIU L L, LI W Y, et al. Optimization for regulatory detailed planning of brownfield redevelopment based on human health risk assessment[J]. Ecological Economy, 2019(8): 223-229. https://www.cnki.com.cn/Article/CJFDTOTAL-STJJ201908039.htm
    [3] KEMNA A, BINLEY A, RAMIREZ A, et al. Complex resistivity tomography for environmental applications[J]. Chemical Engineering Journal, 2000, 77(1): 11-18. http://www2.geo.uni-bonn.de/doc/Kemna_etal_ChemEng_2000.pdf
    [4] 郑刘春, 党志, 曹威, 等. 基于改性农业废弃物的矿山废水中重金属吸附去除技术及应用[J]. 华南师范大学学报(自然科学版), 2015, 47(1): 1-12. doi: 10.6054/j.jscnun.2014.12.003

    ZHENG L C, DANG Z, CAO W, et al. Modified agricultural residue used for removal of heavy metals from mine drainage technologies and applications[J]. Journal of South China Normal University(Natural Science Edition), 2015, 47(1): 1-12. doi: 10.6054/j.jscnun.2014.12.003
    [5] 董浩斌, 王传雷. 高密度电法的发展与应用[J]. 地学前缘, 2003, 10(1): 171-176. doi: 10.3321/j.issn:1005-2321.2003.01.020

    DONG H B, WANG C L. Development and application of dresistivity imaging surveys[J]. Geoscience Frontiers, 2003, 10(1): 171-176. doi: 10.3321/j.issn:1005-2321.2003.01.020
    [6] 何继善. 频率域电法的新进展[J]. 地球物理学进展, 2007(4): 1250-1254. doi: 10.3969/j.issn.1004-2903.2007.04.035

    HE J S. The new development of frequency domain electro-prospecting[J]. Progress in Geophysics, 2007(4): 1250-1254. doi: 10.3969/j.issn.1004-2903.2007.04.035
    [7] LOPES D D, SILVA S, FEMANDES F, et al. Geophysical technique and groundwater monitoring to detect leachate contamination in the surrounding area of a landfill raccurate control and reme[J]. Journal of Environmental Management, 2012, 113: 481-487. doi: 10.1016/j.jenvman.2012.05.028
    [8] HOSEK M, MATYS G T, ELZNICOVA J, et al. Geochemical mapping in polluted floodplains using in situ X-ray fluorescence analysis, geophysical imaging, and statistics: surprising complexity of floodplain pollution hotspot[J]. Catena, 2018, 171: 632-644. doi: 10.1016/j.catena.2018.07.037
    [9] 沈鸿雁. 近地表地球物理勘探[M]. 北京: 中国环境出版社, 2017.

    SHEN H Y. Near-surface geophysical prospecting[M]. Beijing: China Environmental Press, 2017.
    [10] CALAMITA G, ONRATI B, PERRONE A, et al. Field test of a multi-frequency electromagnetic induction sensor for soil moisture monitoring in southern Italy test sites[J]. Journal of Hydrology, 2015, 17: 316-329. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S002216941500520X&originContentFamily=serial&_origin=article&_ts=1439153186&md5=3288de8146a0396289098ae414cc9585
    [11] MAGIERA T, ZAWADZKI J, SZUSAKIEWICZ M, et al. Impact of an iron mine and a nickel smelter at the Norwegian/Russian border close to the Barents Sea on surface soil magnetic susceptibility and content of potentially toxic elements[J]. Chemosphere, 2018, 195: 48-62. doi: 10.1016/j.chemosphere.2017.12.060
    [12] ARISTODEMOU E, THOMAS A. DC resistivity and induced polarisation investigations at a waste disposal site and its environments[J]. Journal of Applied Geophysies, 2000, 44(2/3): 275-300. http://directory.umm.ac.id/Data%20Elmu/jurnal/J-a/Journal%20Of%20Applied%20Geophysics/Vol44.Issue2-3.2000/1189.pdf
    [13] ABDELATIF M A, SULAIMAN W N. Evaluation of groun-dwater and soil pollution in a landfill area using electrical resistivity imaging survey[J]. Environmental Management, 2001, 28(5): 655-663. https://pubmed.ncbi.nlm.nih.gov/11568845/
    [14] 肖波, 李学山, 杨富淋, 等. 基于地下电学特征变化监测场地污染的研究[J]. 环境科学与技术, 2019, 42(6): 163-169. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201906025.htm

    XIAO B, LI X S, YANG F L, et al. Leakage pollution monitoring of environment based on the resistivity method[J]. Environmental Science and Technology, 2019, 42(6): 163-169. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201906025.htm
    [15] 刘汉乐, 张闪. 非均质多孔介质中LNAPL污染过程的高密度电阻率成像法监测[J]. 地球物理学进展, 2014, 29(5): 2401-2406. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201405061.htm

    LIU H L, ZHANG S. Monitoring the process of LNAPL contaminant in heterogeneous porous media using electrical resistivity tomography[J]. Progress in Geophysics, 2014, 29(5): 2401-2406. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201405061.htm
    [16] CINAR H, ALTUNDAS S, ERSOY E, et al. Application of two geophysical methods to characterize a former waste disposal site of the Trabzon-Moloz district in Turkey[J]. Environmental Earth Sciences, 2016, 75(1): 1-16. doi: 10.1007/s12665-015-4873-x
    [17] 张振宇, 许伟伟, 邓亚平, 等. 三氯乙烯污染土壤的复电阻率特征和频谱参数研究[J]. 地学前缘, 2021, 28(5): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202105015.htm

    ZHANG Z Y, XU W W, DENG Y P, et al. Complex resistivity properties and spectral parameters of TCE contaminated soils[J]. Geoscience Frontiers, 2021, 28(5): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202105015.htm
    [18] LIU H, YANG H, YI F. Experimental study of the complex resistivity and dielectric constant of chrome-contaminated soil[J]. Journal of Applied Geophysics, 2016, 131: 109-116. doi: 10.1016/j.jappgeo.2016.05.001
    [19] GIANG N V, MARQUIS G, LE H M. EM and GPR investigations of contaminant spread around the Hoc Mon waste site, Vietnam[J]. Acta Geophysica, 2010, 58(6): 1040-1055. doi: 10.2478/s11600-010-0023-8
    [20] FUKUE M, MINATO T, MATSUMOTO M, et al. Use of a resistivity cone for detecting contaminated soil layers[J]. Engineering Geology, 2001, 60: 361-369. doi: 10.1016/S0013-7952(00)00116-2
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  61
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-06
  • 网络出版日期:  2022-01-10
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回