留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于互补辐射器的Q波段宽带半圆形基片集成波导平面天线

王剑莹 梁振川 许文涛 彭业顺 张涵

王剑莹, 梁振川, 许文涛, 彭业顺, 张涵. 基于互补辐射器的Q波段宽带半圆形基片集成波导平面天线[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 9-14. doi: 10.6054/j.jscnun.2021086
引用本文: 王剑莹, 梁振川, 许文涛, 彭业顺, 张涵. 基于互补辐射器的Q波段宽带半圆形基片集成波导平面天线[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 9-14. doi: 10.6054/j.jscnun.2021086
WANG Jianying, LIANG Zhenchuan, XU Wentao, PENG Yeshun, ZHANG Han. The Wideband Semi-Circular SIW Planar Antenna with Complementary Radiators for Q-Band Applications[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(6): 9-14. doi: 10.6054/j.jscnun.2021086
Citation: WANG Jianying, LIANG Zhenchuan, XU Wentao, PENG Yeshun, ZHANG Han. The Wideband Semi-Circular SIW Planar Antenna with Complementary Radiators for Q-Band Applications[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(6): 9-14. doi: 10.6054/j.jscnun.2021086

基于互补辐射器的Q波段宽带半圆形基片集成波导平面天线

doi: 10.6054/j.jscnun.2021086
基金项目: 

广东省自然科学基金项目 2019A1515011940

广东省自然科学基金项目 2018A030313990

广州市科技计划项目 202002030353

广州市科技计划项目 2019050001

详细信息
    通讯作者:

    张涵,Email: zhanghan@scnu.edu.cn

  • 中图分类号: TN82

The Wideband Semi-Circular SIW Planar Antenna with Complementary Radiators for Q-Band Applications

  • 摘要: 提出了一种基于E形互补辐射器的宽带半圆形基片集成波导(SIW)天线. 为了提高天线的工作带宽,将天线主体部分设计为与微带馈线呈一定角度的半圆形SIW谐振腔. 互补的E形槽和微带线进一步拓展了天线的阻抗带宽,提高了整个工作频带内的增益. 金属化通孔用于改善阻抗匹配. 结果表明:天线-10 dB阻抗的带宽覆盖37.7~47.8 GHz,在整个工作频带内的增益大于6.4 dBi,在38.2 GHz条件下的最大增益达9.8 dBi,同时具备宽频带和高增益的优势.
  • 图  1  宽带半圆形SIW天线的结构

    Figure  1.  The structure of wideband semi-circular SIW antenna

    图  2  基本型半圆SIW缝隙天线的反射系数

    Figure  2.  The reflection coefficient of the basic semi-circular SIW slot antenna

    图  3  倾斜型半圆SIW缝隙天线的反射系数

    Figure  3.  The reflection coefficient of the tilted SIW slot antenna

    图  4  不同辐射器下天线的反射系数

    Figure  4.  The reflection coefficients of the antennas with diffe-rent radiators

    图  5  不同辐射器下天线的增益仿真值

    Figure  5.  The simulated gain of the antennas with different radiators

    图  6  添加匹配通孔前后天线的反射系数

    Figure  6.  The reflection coefficients of the antennas with/without the match via

    图  7  不同SIW倾斜角下天线的反射系数

    Figure  7.  The reflection coefficients of the antennas with different tilt angles

    图  8  天线的反射系数

    Figure  8.  The reflection coefficients of the antennas

    图  9  工作频率为44 GHz时腔内的电场分布

    Figure  9.  The electric field distributions in the cavity operating at 44 GHz

    图  10  天线回波损耗与不同通孔位置的关系

    Figure  10.  The return loss of antennas with different positions of the via

    图  11  天线的实物图

    Figure  11.  The photography of the antenna

    图  12  天线的回波损耗和辐射增益

    Figure  12.  The return loss and the radiation gain of the antenna

    图  13  实测天线的辐射方向

    Figure  13.  The measured radiation patterns of the antenna

    表  1  天线的尺寸

    Table  1.   The dimensions of the antenna mm

    参数 参数 参数
    L1 4.20 W1 0.42 Ls 11.28
    L2 3.64 W2 0.77 Lm 10.39
    L3 4.00 W3 0.20 Lin 4.10
    L4 4.05 W4 1.00 d 0.50
    L5 3.04 W5 0.84 x1 -2.00
    L6 3.90 W6 0.55 y1 -4.00
    L7 1.75 W7 1.04 Win 1.69
    L8 1.92 Rcav 9.00
    下载: 导出CSV

    表  2  与其他宽带天线的性能对比

    Table  2.   The comparison with other wideband antennas

    参考文献 工作频带/GHz 相对带宽/% 增益/dBi
    [7] 17.0~20.5 18.7 ≥4.9
    [11] 42.3~48.4 13.5 3.7~5.2
    [13] 35.4~43.1 18.0 6.5~7.8
    本文 37.7~47.8 23.6 6.4~9.8
    下载: 导出CSV
  • [1] JILANI S F, ALOMAINY A. Millimeter-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks[J]. IET Microwaves Antennas and Propagation, 2018, 12(5): 672-677. doi: 10.1049/iet-map.2017.0467
    [2] 李广, 邓键. 基于光子射频波高次倍频的深度融合通信研究[J]. 华南师范大学学报(自然科学版), 2018, 50(3): 14-18. doi: 10.6054/j.jscnun.2018060

    LI G, DENG J. Research on deeply converged communication system based on photonic-RF wave via high order frequency-beating[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(3): 14-18. doi: 10.6054/j.jscnun.2018060
    [3] HONG W, CHEN J, WANG H, et al. Frequency selection of short range wireless communications[C]//17th China WPAN Standardization Group Meeting. Shanghai, IEEE, 2010.
    [4] WANG L, GUO Y, SHENG W. Wideband high gain 60-GHz LTCC L-probe patch antenna array with a soft surface[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(4): 1802-1809. doi: 10.1109/TAP.2012.2220331
    [5] DING X, ZHAO Z, YANG Y, et al. A compact unidirectional ultra-wideband circularly polarized antenna based on crossed tapered slot radiation elements[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(12): 7353-7358. doi: 10.1109/TAP.2018.2867059
    [6] FAN K, HAO Z C, YUAN Q, et al. Wideband horizontally polarized omnidirectional antenna with a conical beam for millimeter wave applications[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(9): 4437-4448. doi: 10.1109/TAP.2018.2851363
    [7] LUO Q, GAO S, ZHANG L. Wideband multi-layer dual circularly polarized antenna for array application[J]. Electronics Letters, 2015, 51(25): 2087-2089. doi: 10.1049/el.2015.3343
    [8] PARK S J, PARK S O. LHCP and RHCP substrate integrated waveguide antenna arrays for millimeter wave applications[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 601-604. doi: 10.1109/LAWP.2016.2594081
    [9] WEI D J, LI J, YANG G, et al. Design of compact dual-band SIW slotted array antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(6): 1085-1089. doi: 10.1109/LAWP.2018.2833117
    [10] XU W, PENG Y, WANG J, et al. Tunable bandstop HMSIW filter with flexible center frequency and bandwidth using liquid crystal[J]. IEEE Access, 2019, 7: 161308-161317. doi: 10.1109/ACCESS.2019.2951543
    [11] ZHANG Y, XUE Z, HONG W. Planar substrate integrated endfire antenna with wide beam-width for Q-band applications[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1990-1993. doi: 10.1109/LAWP.2017.2692250
    [12] LIU P, ZHU X, JIANG Z H, et al. A compact single-layer Q-band tapered slot antenna array with phase-shifting inductive windows for end-fire patterns[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(1): 169-178. doi: 10.1109/TAP.2018.2876727
    [13] TIAN Y Y, WEI H, YAN Z. Wideband millimeter-wave substrate integrated waveguide cavity-backed rectangular patch antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 205-208. doi: 10.1109/LAWP.2014.2300194
    [14] 张涵, 许文涛, 林峻, 等. 一种基于锥形天线的超宽带微带转波导转换[J]. 华南师范大学学报(自然科学版), 2019, 51(1): 1-4. doi: 10.6054/j.jscnun.2019001

    ZHANG H, XU W, LIN J, et al. A study on the ultra-wideband microstrip-to-waveguide transition based on microstrip tramped antenna[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(1): 1-4. doi: 10.6054/j.jscnun.2019001
    [15] GUAN D F, QIAN Z P, CAO W Q, et al. Com-pact SIW annular ring slot antenna with multi-band multimode characteristics[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(12): 5918-5922. doi: 10.1109/TAP.2015.2487516
    [16] PENG Y, MAI Y, XU W, et al. Dual-band semi-circular HMSIW cavity antenna using higher-order modes[C]//2019 International Symposium on Antennas and Propagation (ISAP). Xi'an: SAP, 2019: 1-3.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  53
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-19
  • 网络出版日期:  2022-01-10
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回