留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶圆级二维单晶材料生长的研究进展

徐小志 张晓闻 王然 曾凡凯 周涛

徐小志, 张晓闻, 王然, 曾凡凯, 周涛. 晶圆级二维单晶材料生长的研究进展[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 1-8. doi: 10.6054/j.jscnun.2021085
引用本文: 徐小志, 张晓闻, 王然, 曾凡凯, 周涛. 晶圆级二维单晶材料生长的研究进展[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 1-8. doi: 10.6054/j.jscnun.2021085
XU Xiaozhi, ZHANG Xiaowen, WANG Ran, ZENG Fankai, ZHOU Tao. The Research Progress on the Growth of Wafer-scale Two-Dimensional Single-crystal Materials[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(6): 1-8. doi: 10.6054/j.jscnun.2021085
Citation: XU Xiaozhi, ZHANG Xiaowen, WANG Ran, ZENG Fankai, ZHOU Tao. The Research Progress on the Growth of Wafer-scale Two-Dimensional Single-crystal Materials[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(6): 1-8. doi: 10.6054/j.jscnun.2021085

晶圆级二维单晶材料生长的研究进展

doi: 10.6054/j.jscnun.2021085
基金项目: 

广东省自然科学基金-杰出青年项目 2020B1515020043

详细信息
    通讯作者:

    徐小志,Email: xiaozhixu@scnu.edu.cn

    张晓闻,Email: zhangxw@m.scnu.edu.cn

  • 中图分类号: O782

The Research Progress on the Growth of Wafer-scale Two-Dimensional Single-crystal Materials

  • 摘要: 低维材料因其原子级的物理尺寸而拥有独特的物理化学性质. 以石墨烯为代表的二维材料具有优越的光学、电学、力学及热学性能,在电子、光电、能源、催化等领域具有巨大的应用潜力. 大尺寸、高质量的单晶材料是大规模高端器件的应用基础. 为此,研究者们致力于实现晶圆级二维单晶材料的制造研究. 利用化学气相沉积法(CVD)制备二维材料具有薄膜质量高、可控性强、均匀性好等优点,因此,CVD成为制备高质量二维单晶材料的首选. 文章从二维导电石墨烯、绝缘氮化硼和半导体过渡金属硫族化合物入手,总结了近年来利用CVD技术外延制造二维单晶薄膜的研究进展,讨论了大面积二维单晶材料的制备策略与生长机理,指出了目前存在的问题,对未来高质量二维单晶薄膜的制备方法进行了展望. 该综述为进一步推动二维单晶材料的规模化应用提供借鉴.
  • 图  1  厘米级单晶石墨烯薄膜的生长、装置示意图及样品照片

    Figure  1.  The device diagram and sample photos of the growth of centimeter-scale single-crystal graphene film

    图  2  大尺寸石墨烯连续生长的示意图及样品照片[10]

    Figure  2.  The schematic diagram and sample photos of continuous growth of large-size graphene[10]

    图  3  2种气体辅助法示意图及石墨烯照片

    (A)连续供氧辅助法生长石墨烯的示意图[11];(B) Al2O3基底支撑的铜箔背面上生长的石墨烯光学照片[11];(C)局部氟辅助的石墨烯生长示意图[12];(D)氟辅助下生长了5 s的石墨烯SEM照片[12].

    Figure  3.  The schematic diagram of two gas-assisted methods and graphene photos

    图  4  Cu-Si合金中多层石墨烯的生长[17]

    Figure  4.  The growth of multilayer graphene in the Cu-Si alloy[17]

    图  5  大面积单一取向h-BN的生长[18]

    Figure  5.  The growth of large-area single-orientation h-BN[18]

    图  6  单一取向MoS2单晶、晶畴以及纳米带的生长

    Figure  6.  The growth of single crystal, domains and nanoribbons of uniform monolayer MoS2

  • [1] ZAVABETI A, JANNAT A, ZHONG L, et al. Two-dimensional materials in large-areas: synthesis, properties and applications[J]. Nano-Micro Letters, 2020, 12(1): 66/1-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wnkb-e202005009
    [2] CHOWDHURY T, SADLER E C, KEMPA T J. Progress and prospects in transition-metal dichalcogenide research beyond 2D[J]. Chemical Reviews, 2020, 120(22): 12563-12591. doi: 10.1021/acs.chemrev.0c00505
    [3] LIU C, WANG L, QI J, et al. Designed growth of large-size 2D single crystals[J]. Advanced Materials, 2020, 32(19): e2000046/1-10. http://d.wanfangdata.com.cn/periodical/dccc875e4e24a9d978499d4d3bfd3ae0
    [4] WANG J, LI T, WANG Q, et al. Controlled growth of atomically thin transition metal dichalcogenides via chemical vapor deposition method[J]. Materials Today Advances, 2020, 8: 100098/1-13. http://www.sciencedirect.com/science/article/pii/S259004982030045X
    [5] LI X, CAI W, AN J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324: 1312-1314. doi: 10.1126/science.1171245
    [6] HAO Y, BHARATHI M S, WANG L, et al. The role of surface oxygen in the growth of large single-crystal graphene on copper[J]. Science, 2013, 342: 720-723. doi: 10.1126/science.1243879
    [7] WU T, ZHANG X, YUAN Q, et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys[J]. Nature Materials, 2016, 15(1): 43-47. doi: 10.1038/nmat4477
    [8] VLASSIOUK I V, STEHLE Y, PUDASAINI P R, et al. Evolutionary selection growth of two-dimensional mate-rials on polycrystalline substrates[J]. Nature Materials, 2018, 17(4): 318-322. doi: 10.1038/s41563-018-0019-3
    [9] DONG J, ZHANG L, DAI X, et al. The epitaxy of 2D materials growth[J]. Nature Communication, 2020, 11(1): 5862/1-8. http://www.nature.com/articles/s41467-020-19752-3?utm_source=other&utm_medium=other&utm_content=null
    [10] XU X, ZHANG Z, DONG J, et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on indus-trial Cu foil[J]. Science Bulletin, 2017, 62(15): 1074-1080. doi: 10.1016/j.scib.2017.07.005
    [11] XU X, ZHANG Z, QIU L, et al. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply[J]. Nature Nanotechnology, 2016, 11(11): 930-935. doi: 10.1038/nnano.2016.132
    [12] LIU C, XU X, QIU L, et al. Kinetic modulation of graphene growth by fluorine through spatially confined decomposition of metal fluorides[J]. Nature Chemistry, 2019, 11(8): 730- 736. doi: 10.1038/s41557-019-0290-1
    [13] FAN Y, LI L, YU G, et al. Recent advances in growth of large-sized 2D single crystals on Cu substrates[J]. Advanced Materials, 2021, 33(1): 2003956/1-11. doi: 10.1002/adma.202003956
    [14] YAN K, PENG H, ZHOU Y, et al. Formation of bilayer bernal graphene: layer-by-layer epitaxy via chemical vapor deposition[J]. Nano Letters, 2011, 11(3): 1106-1110. doi: 10.1021/nl104000b
    [15] LIU W, KRAEMER S, SARKAR D, et al. Controllable and rapid synthesis of high-quality and large-area bernal stacked bilayer graphene using chemical vapor deposition[J]. Chemistry of Materials, 2013, 26(2): 907-915. doi: 10.1021/cm4021854/suppl_file/cm4021854_si_001.pdf
    [16] HUANG M, BAKHAREV P V, WANG Z J, et al. Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil[J]. Nature Nanotechnology, 2020, 15(4): 289-295. doi: 10.1038/s41565-019-0622-8
    [17] NGUYEN V L, DUONG D L, LEE S H, et al. Layer-controlled single-crystalline graphene film with stacking order via Cu-Si alloy formation[J]. Nature Nanotechno-logy, 2020, 15(10): 861-867. doi: 10.1038/s41565-020-0743-0
    [18] WANG L, XU X, ZHANG L, et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper[J]. Nature, 2019, 570: 91-95. doi: 10.1038/s41586-019-1226-z
    [19] CHEN T A, CHUU C P, TSENG C C, et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu(111)[J]. Nature, 2020, 579: 219-223. doi: 10.1038/s41586-020-2009-2
    [20] TANG L, TAN J, NONG H, et al. Chemical vapor deposition growth of two-dimensional compound materials: controllability, material quality, and growth mechanism[J]. Accounts of Materials Research, 2020, 2(1): 36-47. doi: 10.1021/accountsmr.0c00063
    [21] YANG P, ZHANG S, PAN S, et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111)[J]. ACS Nano, 2020, 14(4): 5036-5045. doi: 10.1021/acsnano.0c01478
    [22] ALJARB A, FU J H, HSU C C, et al. Ledge-directed epitaxy of continuously self-aligned single-crystalline nano-ribbons of transition metal dichalcogenides[J]. Nature Materials, 2020, 19(12): 1300-1306. doi: 10.1038/s41563-020-0795-4
  • 加载中
图(6)
计量
  • 文章访问数:  312
  • HTML全文浏览量:  171
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14
  • 网络出版日期:  2022-01-10
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回