留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广州市中心城区人为热排放景观格局的时空变化

彭婷 孙彩歌 张永东 樊风雷

彭婷, 孙彩歌, 张永东, 樊风雷. 广州市中心城区人为热排放景观格局的时空变化[J]. 华南师范大学学报(自然科学版), 2021, 53(5): 92-102. doi: 10.6054/j.jscnun.2021080
引用本文: 彭婷, 孙彩歌, 张永东, 樊风雷. 广州市中心城区人为热排放景观格局的时空变化[J]. 华南师范大学学报(自然科学版), 2021, 53(5): 92-102. doi: 10.6054/j.jscnun.2021080
PENG Ting, SUN Caige, ZHANG Yongdong, FAN Fenglei. The Spatial-temporal Landscape Pattern Variation According to the Anthropogenic Heat in the Central Area of Guangzhou[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(5): 92-102. doi: 10.6054/j.jscnun.2021080
Citation: PENG Ting, SUN Caige, ZHANG Yongdong, FAN Fenglei. The Spatial-temporal Landscape Pattern Variation According to the Anthropogenic Heat in the Central Area of Guangzhou[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(5): 92-102. doi: 10.6054/j.jscnun.2021080

广州市中心城区人为热排放景观格局的时空变化

doi: 10.6054/j.jscnun.2021080
基金项目: 

国家自然科学基金项目 41901347

中国博士后科学基金项目 2018M643109

广东省基础与应用基础研究基金项目 2018A030313683

广东省基础与应用基础研究基金项目 2020A1515010562

详细信息
    通讯作者:

    孙彩歌,Email: cgsun@m.scnu.edu.cn

  • 中图分类号: X16;P42

The Spatial-temporal Landscape Pattern Variation According to the Anthropogenic Heat in the Central Area of Guangzhou

  • 摘要: 为了探究人为热排放对城市生态环境的影响,以广州市中心城区为研究区,利用Landsat数据和地表能量平衡方程,研究了2004—2020年城市人为热排放时空演变状况,结合转移矩阵和景观格局指数分析了人为热排放的时空变化特征及景观格局变化规律. 结果表明:(1)从时间上来看,2004—2014、2014—2020年的人为热排放变化分别以区域快速扩张、强度明显增强为主要特点;从空间上来看,广州市中心城区南部的人为热排放强度比北部的高. (2)人为热排放转移矩阵显示2004—2020年广州市中心城区人为热排放变化显著,低排放区面积占比的变化幅度最大(减少15.72%),其次是中排放区(增加14.51%),高排放区面积占比的变化幅度最小(增加0.28%). 由低排放区转为其他类型的比例高达97.36%,由其他类型转为中排放区的比例高达98.43%,构成了人为热排放变化的主要形式. (3)景观水平上,景观聚集度指数(CONTAG)上升,香农多样性指数(SHDI)和修正Simpon均匀度指数(MSIEI)下降,中心城区的人为热排放景观异质性增强,破碎程度提高;不同等级区人为热排放的景观格局演变具有明显差异,其中,低强度排放景观格局(低排放区、低中排放区)趋于稳定性、规则化,高强度排放景观格局(中排放区、中高排放区、高排放区)趋于破碎化、不规则化.
  • 图  1  广州市中心城区示意图

    Figure  1.  The central urban area of Guangzhou City

    图  2  不同时期广州市中心城区人为热排放空间分布状况

    Figure  2.  The spatial distribution of anthropogenic heat emission in the central area of Guangzhou in different periods

    图  3  不同时期广州市中心城区人为热等级区分布图

    Figure  3.  The spatial distribution of anthropogenic heat of different levels in the central area of Guangzhou in different periods

    图  4  广州市中心城区类型水平上的景观格局指数变化(2004—2020年)

    Figure  4.  The change of landscape pattern index according to the emission levels in the central area of Guangzhou from 2004 to 2020

    图  5  广州市中心城区景观水平上的景观格局指数变化(2004—2020年)

    Figure  5.  The change of landscape pattern index according to the landscape level in the central area of Guangzhou from 2004 to 2020

    表  1  广州站同期气象数据

    Table  1.   The meteorological data of Guangzhou

    数据获取时间 大气温度/℃ 大气压/hpa 水汽压/hpa 风速/(m·s-2) 太阳总辐射/(W·m-2)
    2004-01-21 7.0 1 019.9 6.0 4.1 896
    2009-01-02 11.8 1 022.0 4.6 2.7 681
    2014-01-16 9.4 1 015.9 8.1 3.7 721
    2020-02-18 10.7 1 018.2 6.9 4.9 863
    下载: 导出CSV

    表  2  6个土地利用类型的部分参数值

    Table  2.   Some parameters of 6 land use types

    土地利用类型 Cg z0m/m z0h /m d/m
    耕地 0.30 0.1 0.001 0.10
    林地 0.13 0.3 0.000 3 1.50
    草地 0.30 0.1 0.001 0.10
    水体 0.90 0.33 0.003 3 1.66
    建设用地 0.20 0.000 03 0.000 088 0.05
    裸地 0.30 0.001 0.000 02 0.05
    下载: 导出CSV

    表  3  不同时期广州市中心城区的人为热排放强度

    Table  3.   The anthropogenic heat emission in the central area of Guangzhou in different periods

    数据获取时间 平均值/(W·m-2) 最大值/(W·m-2) 主要分布区间/(W·m-2) 人为热排放面积/km2
    2004-01-21 53.91 245.7 32.7~90.1 535.15
    2009-01-02 59.26 245.5 33.3~97.2 605.13
    2014-01-16 62.26 228.9 30.1~105.2 629.52
    2020-02-18 96.28 401.2 52.7~131.6 638.13
    下载: 导出CSV

    表  4  广州中心城区不同等级区人为热排放情况统计表

    Table  4.   The statistics of zones of different-levle anthropogenic heat emission in the central area of Guangzhou

    人为热排放等级区 2004 2009 2014 2020
    面积/km2 占比/% 面积/km2 占比/% 面积/km2 占比/% 面积/km2 占比/%
    零排放区 936.98 63.70 865.93 58.86 841.51 57.20 833.94 56.69
    低排放区 244.53 16.62 156.84 10.66 174.87 11.89 13.16 0.90
    低中排放区 282.80 19.22 440.53 29.95 423.68 28.80 377.53 25.66
    中排放区 6.57 0.45 7.53 0.51 27.34 1.86 220.10 14.96
    中高排放区 0.18 0.01 0.17 0.01 1.07 0.07 22.28 1.51
    高排放区 0.02 0.00 0.08 0.01 2.61 0.18 4.07 0.28
    下载: 导出CSV

    表  5  2004—2020年广州市中心城区不同排放类型转移矩阵

    Table  5.   The transfer matrix of different levels of anthropogenic heat emission in the central area of Guangzhou from 2004 to 2020 km2

    2004年人为热排放等级区 2020年人为热排放等级区 总计
    零排放区 低排放区 低中排放区 中排放区 中高排放区 高排放区
    零排放区 804.80 3.84 74.96 46.72 5.50 1.16 936.98
    低排放区 9.78 6.45 173.72 50.11 3.99 0.48 244.53
    低中排放区 19.16 2.82 127.27 119.71 11.60 2.24 282.80
    中排放区 0.20 0.05 1.55 3.46 1.15 0.16 6.57
    中高排放区 0.00 0.00 0.03 0.10 0.03 0.02 0.18
    高排放区 0.00 0.00 0.00 0.00 0.01 0.01 0.02
    总计 833.94 13.16 377.53 220.10 22.28 4.07 1 471.08
    下载: 导出CSV
  • [1] OFFERLE B, JONSSON P, ELIASSON I, et al. Urban mo-dification of the surface energy balance in the West African Sahel: Ouagadougou, Burkina Faso[J]. Journal of Climate, 2005, 18(19): 3983-3995. doi: 10.1175/JCLI3520.1
    [2] 王业宁, 孙然好, 陈利顶. 人为热计算方法的研究综述[J]. 应用生态学报, 2016, 27(6): 2024-2030. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201606039.htm

    WANG Y N, SUN R H, CHEN L D. Review on studies of anthropogenic heat emission[J]. Chinese Journal of Applied Ecology, 2016, 27(6): 2024-2030. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201606039.htm
    [3] 白杨, 王晓云, 姜海梅, 等. 城市热岛效应研究进展[J]. 气象与环境学报, 2013, 29(2): 101-106. doi: 10.3969/j.issn.1673-503X.2013.02.016

    BAI Y, WANG X Y, JIANG H M, et al. Progress of urban heat island effect[J]. Journal of Meteorology and Environment, 2013, 29(2): 101-106. doi: 10.3969/j.issn.1673-503X.2013.02.016
    [4] WU J. Urban sustainability: an inevitable goal of landscape research[J]. Landscape Ecology, 2010, 25(1): 1-4. doi: 10.1007/s10980-009-9444-7
    [5] 肖荣波, 欧阳志云, 李伟峰, 等. 城市热岛的生态环境效应[J]. 生态学报, 2005, 25(8): 2055-2060. doi: 10.3321/j.issn:1000-0933.2005.08.032

    XIAO R B, OUYANG Z Y, LI W F, et al. A review of the eco-environmental consequences of urban heat islands[J]. Acta Ecologica Sinica, 2005, 25(8): 2055-2060. doi: 10.3321/j.issn:1000-0933.2005.08.032
    [6] 施婕, 谢旻, 朱宽广, 等. 中国城市人为热通量估计及时空分布[J]. 中国环境科学, 2020, 40(4): 1819-1824. doi: 10.3969/j.issn.1000-6923.2020.04.050

    SHI J, XIE M, ZHU K G, et al. Estimation of anthropogenic heat flux and its temporal and spatial distribution in Chinese cities[J]. China Environmental Science, 2020, 40(4): 1819-1824. doi: 10.3969/j.issn.1000-6923.2020.04.050
    [7] CHEN S, HU D. Parameterizing anthropogenic heat flux with an energy-consumption inventory and multi-source remote sensing data[J]. Remote Sensing, 2017, 9(11): 1165/1-20. doi: 10.3390/rs9111165
    [8] SAILOR D J. A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment[J]. International Journal of Climatology, 2011, 31(2): 189-199. doi: 10.1002/joc.2106
    [9] 孙然好, 王业宁, 陈婷婷. 人为热排放对城市热环境的影响研究展望[J]. 生态学报, 2017, 37(12): 3991-3997. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201712005.htm

    SUN R H, WANG Y N, CHEN T T. Impacts of anthropogenic heat emissions on urban thermal environment: a review[J]. Acta Ecologica Sinica, 2017, 37(12): 3991-3997. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201712005.htm
    [10] 朱婷媛. 基于Landsat遥感影像的杭州城市人为热定量估算研究[D]. 杭州: 浙江大学, 2015.

    ZHU T Y. Research on the quantitative estimation of urban human heat in Hangzhou based on Landsat remote sensing images[D]. Hangzhou: Zhejiang University, 2015.
    [11] 王茹, 张艳芳, 张洪敏, 等. 城市新区不透水地表盖度与人为热的关系研究——以陕西省西咸新区为例[J]. 国土资源遥感, 2020, 32(1): 247-254. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG202001034.htm

    WANG R, ZHANG Y F, ZHANG H M, et al. Study on the relationship between impervious surface coverage and artificial heat in new urban districts: a case study of Xixian New District, Shaanxi Province[J]. Remote Sensing for Land & Resources, 2020, 32(1): 247-254. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG202001034.htm
    [12] 刘嘉慧, 赵小锋, 林剑艺. 基于地表能量平衡的厦门岛城市功能区人为热排放分析[J]. 地球信息科学学报, 2018, 20(7): 1026-1036. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201807018.htm

    LIU J H, ZHAO X F, LIN J Y. Analysis of anthropogenic heat discharge of urban functional regions based on surface energy balance in Xiamen Island[J]. Journal of Geo-Information Science, 2018, 20(7): 1026-1036. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201807018.htm
    [13] KATO S, YAMAGUCHI Y. Analysis of urban heat-island effect using ASTER and ETM+ data: separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux[J]. Remote Sensing of Environment, 2005, 99(1/2): 44-54. http://www.sciencedirect.com/science/article/pii/S0034425705001707
    [14] ZHOU Y, WENG Q, GURNEY K R, et al. Estimation of the relationship between remotely sensed anthropogenic heat discharge and building energy use[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67: 65-72. doi: 10.1016/j.isprsjprs.2011.10.007
    [15] WONG M S, YANG J, NICHOL J, et al. Modeling of anthropogenic heat flux using HJ-1B Chinese small satellite image: a study of heterogeneous urbanized areas in Hong Kong[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1466-1470. doi: 10.1109/LGRS.2015.2409111
    [16] HU D, YANG L, ZHOU J, et al. Estimation of urban energy heat flux and anthropogenic heat discharge using aster image and meteorological data: case study in Beijing metropolitan area[J]. Journal of Applied Remote Sensing, 2012, 6(1): 063559/1-20. doi: 10.1117/1.JRS.6.063559
    [17] CHEN Q, YANG X, OUYANG Z, et al. Estimation of anthropogenic heat emissions in China using Cubist with points-of-interest and multisource remote sensing data[J]. Environmental Pollution, 2020, 266: 115183/1-10. doi: 10.1016/j.envpol.2020.115183
    [18] CHEN S, HU D, WONG M S, et al. Characterizing spatiotemporal dynamics of anthropogenic heat fluxes: a 20-year case study in Beijing-Tianjin-Hebei region in China[J]. Environmental Pollution, 2019, 249: 923-931. doi: 10.1016/j.envpol.2019.03.113
    [19] 郭泺, 杜世宏, 薛达元, 等. 快速城市化进程中广州市景观格局时空分异特征的研究[J]. 北京大学学报(自然科学版), 2009, 45(1): 129-136. doi: 10.3321/j.issn:0479-8023.2009.01.019

    GUO L, DU S H, XUE D Y, et al. Spatio-temporal variation of landscape patterns during rapid urbanization in Guangzhou City[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(1): 129-136. doi: 10.3321/j.issn:0479-8023.2009.01.019
    [20] FAN H, SAILOR D J. Modeling the impacts of anthropogenic heating on the urban climate of Philadelphia: a comparison of implementations in two PBL schemes[J]. Atmospheric Environment, 2005, 39(1): 73-84. doi: 10.1016/j.atmosenv.2004.09.031
    [21] 乐通潮, 聂森, 潘辉, 等. 基于Landsat8卫星影像的地表温度反演及福州春季城市热岛效应分析[J]. 西北林学院学报, 2019, 34(5): 154-160. doi: 10.3969/j.issn.1001-7461.2019.05.24

    LE T C, NIE S, PAN H, et al. Land surface temperature retrieval and urban heat island effect based on Landsat8 image in Fuzhou City[J]. Journal of Northwest Forestry University, 2019, 34(5): 154-160. doi: 10.3969/j.issn.1001-7461.2019.05.24
    [22] 潘竟虎. 兰州市景观生态格局热环境效应研究[D]. 兰州: 兰州大学, 2011.

    PAN J H. Study on thermal environment effect of landscape ecological pattern in Lanzhou City[D]. Lanzhou: Lanzhou University, 2011.
    [23] OKE T R. The urban energy balance[J]. Progress in Physical Geography, 1988, 12(4): 471-508. doi: 10.1177/030913338801200401
    [24] 王煜东, 赵小艳, 徐向华, 等. 南京地区地表热通量的遥感反演分析[J]. 生态环境学报, 2016, 25(4): 636-646. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201604013.htm

    WANG Y D, ZHAO X Y, XU X H, et al. Analysis and inversion on surface heat flux with remote sensing in Nanjing Area[J]. Ecology and Environment Sciences, 2016, 25(4): 636-646. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201604013.htm
    [25] 李红军, 雷玉平, 郑力, 等. SEBAL模型及其在区域蒸散研究中的应用[J]. 遥感技术与应用, 2005(3): 321-325. doi: 10.3969/j.issn.1004-0323.2005.03.003

    LI H J, LEI Y P, ZHEN L, et al. SEBAL model and its application in the study of regional evapotranspiration[J]. Remote Sensing Technology and Application, 2005(3): 321-325. doi: 10.3969/j.issn.1004-0323.2005.03.003
    [26] NOILHAN J, LACARRERE P. GCM grid-scale evaporation from mesoscale modeling[J]. Journal of Climate, 1995, 8(2): 206-223. doi: 10.1175/1520-0442(1995)008<0206:GGSEFM>2.0.CO;2
    [27] 刘瑞, 朱道林. 基于转移矩阵的土地利用变化信息挖掘方法探讨[J]. 资源科学, 2010, 32(8): 1544-1550. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201008017.htm

    LIU R, ZHU D L. Methods for detecting land use changes based on the land use transition matrix[J]. Resources Science, 2010, 32(8): 1544-1550. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201008017.htm
    [28] 乔伟峰, 盛业华, 方斌, 等. 基于转移矩阵的高度城市化区域土地利用演变信息挖掘——以江苏省苏州市为例[J]. 地理研究, 2013, 32(8): 1497-1507. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201308015.htm

    QIAO W F, SHEN Y H, FANG B, et al. Land use change information mining in highly urbanized area based on transfer matrix: a case study of Suzhou, Jiangsu Province[J]. Geographical Research, 2013, 32(8): 1497-1507. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201308015.htm
    [29] 冯珊珊, 樊风雷. 基于不透水面的粤港澳大湾区景观格局时空变化[J]. 应用生态学报, 2018, 29(9): 2907-2914. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201809013.htm

    FENG S S, FAN F L. Spatiotemporal changes of landscape pattern using impervious surface in Guangdong-Hong Kong-Macao Greater Bay Area, China[J]. Chinese Journal of Applied Ecology, 2018, 29(9): 2907-2914. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201809013.htm
    [30] 何鹏, 张会儒. 常用景观指数的因子分析和筛选方法研究[J]. 林业科学研究, 2009, 22(4): 470-474. doi: 10.3321/j.issn:1001-1498.2009.04.002

    HE P, ZHANG H R. Study on factor analysis and selection of common landscape metrics[J]. Forest Research, 2009, 22(4): 470-474. doi: 10.3321/j.issn:1001-1498.2009.04.002
    [31] 叶晶萍, 刘士余, 盛菲, 等. 寻乌水流域景观格局演变及其生态环境效应[J]. 生态学报, 2020, 40(14): 4737-4748. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202014004.htm

    YE J P, LIU S Y, SHEN F, et al. The evolution of landscape pattern in Xunwu River Basin and its ecological environment effect[J]. Acta Ecologica Sinica, 2020, 40(14): 4737-4748. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202014004.htm
    [32] LU Y, WANG Q, ZHANG Y, et al. An estimate of anthropogenic heat emissions in China[J]. International Journal of Climatology, 2016, 36(3): 1134-1142. doi: 10.1002/joc.4407
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  108
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-18
  • 网络出版日期:  2021-11-11
  • 刊出日期:  2021-10-25

目录

    /

    返回文章
    返回