留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物炭在矿区农田土壤中与镉的纵向共迁移行为

戴光玲 蒋少军 吴嘉晨 舒月红

戴光玲, 蒋少军, 吴嘉晨, 舒月红. 生物炭在矿区农田土壤中与镉的纵向共迁移行为[J]. 华南师范大学学报(自然科学版), 2021, 53(5): 37-45. doi: 10.6054/j.jscnun.2021073
引用本文: 戴光玲, 蒋少军, 吴嘉晨, 舒月红. 生物炭在矿区农田土壤中与镉的纵向共迁移行为[J]. 华南师范大学学报(自然科学版), 2021, 53(5): 37-45. doi: 10.6054/j.jscnun.2021073
DAI Guangling, JIANG Shaojun, WU Jiachen, SHU Yuehong. The Vertical Co-Migration Behavior of Biochar and Cd in Farmland Near the Mining Area[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(5): 37-45. doi: 10.6054/j.jscnun.2021073
Citation: DAI Guangling, JIANG Shaojun, WU Jiachen, SHU Yuehong. The Vertical Co-Migration Behavior of Biochar and Cd in Farmland Near the Mining Area[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(5): 37-45. doi: 10.6054/j.jscnun.2021073

生物炭在矿区农田土壤中与镉的纵向共迁移行为

doi: 10.6054/j.jscnun.2021073
基金项目: 

国家自然科学基金项目 21347003

NSFC-广东联合重点基金项目 U1201234

详细信息
    通讯作者:

    舒月红,Email: shuyuehong@m.scnu.edu.cn

  • 中图分类号: X502

The Vertical Co-Migration Behavior of Biochar and Cd in Farmland Near the Mining Area

  • 摘要: 以广东韶关大宝山矿山废水污染的农田为研究对象,利用超纯水和甲苯/甲醇提取的溶解性有机质(DOM)的三维荧光光谱平行因子分析(EEM-PARAFAC)技术,追踪荔枝树枝生物炭1年内在土壤层0~100 cm深度范围的迁移行为及其协同重金属镉(Cd)的纵向迁移性质. 结果表明:生物炭增加了0~60 cm深土壤层溶解性有机碳(DOC)的质量分数,增加了表层土壤的pH,对深层土壤pH无明显影响;EEM-PARAFAC解析得到3个DOM组分(1个类蛋白和2个类腐殖质组分),生物炭的添加增大了0~60 cm深土壤层类腐殖质的质量分数;并且甲苯/甲醇提取的DOM在0~60 cm深土壤层中均检测出生物炭特有的多环芳烃结构,说明生物炭在1年内发生了明显的纵向迁移;生物炭能够有效降低0~20 cm深土壤中有效态Cd的质量分数,但20~60 cm深土层中有效态Cd与对照组的相比最高增加了148%左右. 研究表明:需要特别关注生物炭协同重金属在土壤中纵向迁移行为所带来的环境影响.
  • 图  1  荔枝生物炭的SEM图

    Figure  1.  The SEM images of litchi biochar

    图  2  不同方法提取的3组分的三维荧光光谱及特征曲线

    Figure  2.  The three-dimensional fluorescence spectroscopy and the characteristic curves of three components extracted with different methods

    图  3  甲苯/甲醇提取纯生物炭的荧光指纹图谱

    Figure  3.  The pure biochar fingerprint extracted with toluene/methanol

    图  4  超纯水和甲苯/甲醇提取的土壤DOM 3种组分的荧光强度

    注:CK、C表示对照组和处理组;年份分别表示2017年10月和2018年4月采集土壤样品.

    Figure  4.  The intensity of the three components of the soil sample extracted with ultra-pure water and toluene/methanol

    图  5  不同土壤深度处理组和对照组的Cd的质量分数

    注:图中年份对应于2017年10月、2018年4月,不同字母表示Cd质量分数差异显著性(P < 0.05).

    Figure  5.  The mass fractions of available and total Cd at different soil depths in the control group and the treatment group

    图  6  不同土壤中Cd的地质污染指数(Igeo)

    注:图中不同字母表示污染指数差异显著性(P < 0.05)

    Figure  6.  The geological accumulation index (Igeo) of Cd in different soil profiles

    表  1  生物炭的基本理化性质

    Table  1.   The physical and chemical properties of biochar

    理化参数 参数值
    pH 9.53±1.50
    w(DOC)/(mg·kg-1) 723±58
    mCEC/(mmol·kg-1) 2.625±0.680
    w(灰分)/% 9.5
    w(C)/% 73.58
    n(H)/n(C) 0.02
    n(O)/n(C) 0.19
    比表面积/(m2·g-1) 412.3
    孔径/nm 4.45
    下载: 导出CSV

    表  2  不同土壤深度对照组(CK)和处理组(C)的pH和溶解有机碳的质量分数

    Table  2.   The pH and dissolved organic carbon content of control group (CK) and treatment group (C) at different soil depths

    时间 深度/cm pH w(DOC)/(mg·kg-1)
    CK C CK C
    2017年10月 0~20 4.16±0.12(b)b 4.72±0.11(a)ab 103±15(b)a 157±20(a)a
    20~40 4.20±0.06(a)b 4.29±0.10(a)c 71±5(b)b 100±15(a)b
    40~60 4.01±0.27(a)b 4.31±0.03(a)c 22±3(a)c 37±9(a)c
    60~80 4.43±0.13(a)ab 4.59±0.14(a)b 25±5(a)c 27±10(a)c
    80~100 4.77±0.15(a)a 5.08±0.20(a)a 20±6(a)c 19±5(a)c
    2018年4月 0~20 4.11±0.08(b)d 4.67±0.02(b)b 53±10(a)a 72±14(a)a
    20~40 4.13±0.00(a)d 4.20±0.03(a)c 28±8(a)b 39±6(a)b
    40~60 4.46±0.07(a)c 4.50±0.00(a)b 25±9(a)b 26±5(a)b
    60~80 5.07±0.11(a)b 4.81±0.11(a)ab 24±2(a)b 25±3(a)b
    80~100 5.49±0.14(a)a 4.99±0.34(a)a 19±5(a)b 20±3(a)b
    注:数据均以平均值±标准差显示,n=3. 同一行括号里的不同字母表示处理组和对照组土壤差异显著性,同一列不同字母表示不同深度土壤差异显著性(P < 0.05).
    下载: 导出CSV

    表  3  超纯水提取土壤DOM组分的特征

    Table  3.   The characteristics of DOM components in the soil extracted with ultrapure water

    样品 (λex/λem)/nm 荧光物质类型 来源 文献
    组分1 220/320, 270/320 类蛋白质 土壤中色氨酸和络氨酸 [19]
    组分2 220/390, 280/390 类腐殖质 可溶性微生物代谢产物、富里酸 [20]
    组分3 270/440, 440/440 类腐殖质 UVA+UVC腐殖酸 [8, 21]
    下载: 导出CSV

    表  4  土壤Cd淋失率的变化

    Table  4.   The variation of the leaching ratio of Cd in the soil profile

    土壤层深度/cm 2017年10月Cd淋失率 2018年4月Cd淋失率
    对照组 处理组 对照组 处理组
    0~20 0.691±0.052(b)c 0.921±0.062(a)b 0.776±0.062(b)c 1.086±0.062(a)b
    20~40 0.940±0.042(a)b 1.120±0.082(a)b 1.159±0.212(a)b 1.304±0.062(a)a
    40~60 2.001±0.123(a)a 1.567±0.212(b)a 1.874±0.112(a)a 1.338±0.112(b)a
    60~80 1.083±0.062(a)b 1.066±0.072(a)b 1.173±0.102(a)b 1.182±0.052(a)b
    注:表中同列不同字母表示不同深度淋失率差异显著性,同一行括号里的不同字母表示处理组和对照组土壤差异显著性(P < 0.05).
    下载: 导出CSV
  • [1] LI G, KHAN S, IBRAHIM M, et al. Biochars induced modification of dissolved organic matter (DOM) in soil andits impact on mobility and bioaccumulation of arsenic and cadmium[J]. Journal of Hazardous Materials, 2018, 348: 100-108. doi: 10.1016/j.jhazmat.2018.01.031
    [2] 苏炽权, 汝强, 石正禄, 等. 生物炭负载金属硒化物复合材料的储锂性能[J]. 华南师范大学学报(自然科学版), 2019, 51(5): 32-37. doi: 10.6054/j.jscnun.2019082

    SU C Q, RU Q, SHI Z L, et al. The lithium storage performance of biochar-loaded metal selenide composite material[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 32-37. doi: 10.6054/j.jscnun.2019082
    [3] CHEN M, WANG D, YANG F, et al. Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions[J]. Environmental Pollution, 2017, 230: 540-549. doi: 10.1016/j.envpol.2017.06.101
    [4] UCHIMIYA M, LIU Z, SISTANI K. Field-scale fluorescence fingerprinting of biochar-borne dissolved organic carbon[J]. Journal of Environmental Management, 2016, 169: 184-190. http://daneshyari.com/article/preview/1055449.pdf
    [5] STEDMONC A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial[J]. Limnology and Oceanography: Methods, 2008, 6(11): 572-579. doi: 10.4319/lom.2008.6.572
    [6] UCHIMIYA M, NODA I, ORLOV A, et al. In situ and ex situ 2D infrared/fluorescence correlation monitoring of surface functionality and electron density of biochars[J]. ACS Sustainable Chemistry and Engineering, 2018, 6(6): 8055-8062. doi: 10.1021/acssuschemeng.8b01720
    [7] 陈玲桂. 生物炭输入对农田土壤重金属迁移的影响研究[D]. 杭州: 浙江大学, 2013.

    CHEN L G. Influence of biochar on migration of heavy metal in agricultural soil[D]. Hangzhou: Zhejiang University, 2013.
    [8] FAN Q, SUN J, QUAN G, et al. Insights into the effects of long-term biochar loading on water-soluble organic matter in soil: implications for the vertical co-migration of heavy metals[J]. Environment International, 2020, 136: 105439/1-12. doi: 10.1016/j.envint.2019.105439
    [9] JIANG S, LIU J, WU J, et al. Assessing biochar application to immobilize Cd and Pb in a contaminated soil: a field experiment under a cucumber-sweet potato-rape rotation[J]. Environmental Geochemistry and Health, 2020, 42(12): 4233-4244. doi: 10.1007/s10653-020-00564-9
    [10] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

    LU R K. Methods for agricultural chemical analysis of soils[M]. Beijing: China's Agricultural Science and Technology Press, 2000.
    [11] 王建乐, 谢仕斌, 王冠, 等. 不同提取剂提取土壤中重金属能力的对比研究[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 55-62. doi: 10.6054/j.jscnun.2020009

    WANG J L, XIE S B, WANG G, et al. A comparative study of the capacity of different extractants to extract heavy metals in soil[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(1): 55-62. doi: 10.6054/j.jscnun.2020009
    [12] 南忠仁, 李吉均. 干旱区耕作土壤中重金属镉铅镍剖面分布及行为研究——以白银市区灰钙土为例[J]. 干旱区研究, 2000(4): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ200004007.htm

    NAN Z R, LI J J. Study on the distribution and behavior of selected metals (Cd, Ni, Pb) in cultivated soil profile in arid zone (take Baiyin Region as an example)[J]. Arid Zone Research, 2000(4): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ200004007.htm
    [13] MVLLER G. Index of geoaccumulation in sediments of the Rhine River[J]. Geojournal, 1969, 2(3): 108-118. http://www.researchgate.net/publication/308054537_Index_of_Geoaccumulation_in_Sediments_of_the_Rhine_River
    [14] 顾金峰, 朱四喜, 刘冬, 等. 贵州锁黄仓沼泽土壤重金属含量分布特征及污染评价[J]. 科学技术与工程, 2020, 20(13): 5429-5436. doi: 10.3969/j.issn.1671-1815.2020.13.063

    GU J F, ZHU S X, LIU D, et al. Pollution assessment and distribution characteristics of heavy metal contents in swamp soils in Suohuangcang in Guizhou[J]. Science Technology and Engineering, 2020, 20(13): 5429-5436. doi: 10.3969/j.issn.1671-1815.2020.13.063
    [15] CHEN B L, ZHOU D D, ZHU L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science and Technology, 2008, 42(14): 5137-5143. doi: 10.1021/es8002684
    [16] 高瑞丽, 朱俊, 汤帆, 等. 水稻秸秆生物炭对镉、铅复合污染土壤中重金属形态转化的短期影响[J]. 环境科学学报, 2016, 36(1): 251-256. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201601031.htm

    GAO R L, ZHU J, TANG F, et al. Fractions transformation of Cd, Pb in contaminated soil after short-term application of rice straw bichar[J]. Acta Scientiate Circumatantiae, 2016, 36(1): 251-256. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201601031.htm
    [17] SMEBYE A, ALLING V, VOGT R D, et al. Biochar amendment to soil changes dissolved organic matter content and composition[J]. Chemosphere, 2016, 142: 100-105. doi: 10.1016/j.chemosphere.2015.04.087
    [18] HE E, YANG Y, XU Z, et al. Two years of aging influences the distribution and lability of metal(loid)s in a contaminated soil amended with different biochars[J]. Science of the Total Environment, 2019, 673: 245-253. doi: 10.1016/j.scitotenv.2019.04.037
    [19] ZHANG A, ZHOU X, LI M, et al. Impacts of biochar addition on soil dissolved organic matter characteristics in a wheat-maize rotation system in Loess Plateau of China[J]. Chemosphere, 2017, 186: 986-993. doi: 10.1016/j.chemosphere.2017.08.074
    [20] WEI J, TU C, YUAN G, et al. Limited Cu(Ⅱ) binding to biochar DOM: evidence from C K-edge NEXAFS and EEM-PARAFAC combined with two-dimensional correlation analysis[J]. Science of the Total Environment, 2020, 701: 134919/1-10. doi: 10.1016/j.scitotenv.2019.134919
    [21] WU H, QI Y, DONG L, et al. Revealing the impact of pyrolysis temperature on dissolved organic matter released from the biochar prepared from Typha orientalis[J]. Chemosphere, 2019, 228: 264-270. doi: 10.1016/j.chemosphere.2019.04.143
    [22] UCHIMIYA M, FRANZLUEBBERS A J, LIU Z, et al. Detection of biochar carbon by fluorescence and near-infrared-based chemometrics[J]. Aquatic Geochemistry, 2019, 24(5/6): 345-361. doi: 10.1007/s10498-018-9347-9
    [23] WANG D, ZHANG W, HAO X, et al. Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size[J]. Environmental Science and Technology, 2013, 47(2): 821-828. doi: 10.1021/es303794d
    [24] ZHANG X, SU C, LIU X, et al. Periodical changes of dissolved organic matter (DOM) properties induced by biochar application and its impact on downward migration of heavy metals under flood conditions[J]. Journal of Cleaner Production, 2020, 275: 123787/1-8. doi: 10.1016/j.jclepro.2020.123787
    [25] HUANG M, LI Z, LUO N, et al. Application potential of biochar in environment: insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals[J]. Science of the Total Environment, 2019, 646: 220-228. doi: 10.1016/j.scitotenv.2018.07.282
    [26] 王宇珊, 刘成坚, 陈晓燕, 等. 垃圾焚烧厂周边土壤的重金属污染风险评价[J]. 华南师范大学学报(自然科学版), 2020, 52(5): 57-64. doi: 10.6054/j.jscnun.2020078

    WANG Y S, LIU C J, CHEN X Y, et al. Pollution risk assessments of heavy metals in soils around a municipal solid waste incinerator[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(5): 57-64. doi: 10.6054/j.jscnun.2020078
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  98
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-24
  • 网络出版日期:  2021-11-11
  • 刊出日期:  2021-10-25

目录

    /

    返回文章
    返回