留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

从属于指数函数的星像函数子类的四阶Hankel行列式

张海燕 汤获 马丽娜

张海燕, 汤获, 马丽娜. 从属于指数函数的星像函数子类的四阶Hankel行列式[J]. 华南师范大学学报(自然科学版), 2021, 53(4): 84-90. doi: 10.6054/j.jscnun.2021062
引用本文: 张海燕, 汤获, 马丽娜. 从属于指数函数的星像函数子类的四阶Hankel行列式[J]. 华南师范大学学报(自然科学版), 2021, 53(4): 84-90. doi: 10.6054/j.jscnun.2021062
ZHANG Haiyan, TANG Huo, MA Lina. The Fourth-order Hankel Determinant for Certain Subclasses of Star-like Functions Subordinate to Exponential Function[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(4): 84-90. doi: 10.6054/j.jscnun.2021062
Citation: ZHANG Haiyan, TANG Huo, MA Lina. The Fourth-order Hankel Determinant for Certain Subclasses of Star-like Functions Subordinate to Exponential Function[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(4): 84-90. doi: 10.6054/j.jscnun.2021062

从属于指数函数的星像函数子类的四阶Hankel行列式

doi: 10.6054/j.jscnun.2021062
基金项目: 

国家自然科学基金项目 11561001

内蒙古自治区青年科技英才支持计划项目 NJYT-18-A14

内蒙古自治区自然科学基金项目 2018MS01026

内蒙古自治区自然科学基金项目 2020MS01011

内蒙古自治区高校科研项目 NJZY20200

详细信息
    通讯作者:

    张海燕, Email: cfxyzhhy@163.com

  • 中图分类号: O174.5

The Fourth-order Hankel Determinant for Certain Subclasses of Star-like Functions Subordinate to Exponential Function

  • 摘要:$\mathcal{A} $表示单位圆盘D={z${\mathbb{C}} $ ∶ |z| < 1}内解析且具有如下形式 $f(z)=z+\sum\limits_{n=2}^{\infty} a_{n} z^{n}$ 的函数族. 文章研究了在单位圆盘D上与指数函数有关的解析函数类Se*: $S_{e}^{*}=\left\{f \mid \frac{z f^{\prime}(z)}{f(z)} \prec \mathrm{e}^{z} \quad(f \in \mathcal{A}, z \in D)\right\}$ 的四阶Hankel行列式H4(1), 得到其上界估计.
  • [1] MA W C, MINDA D. A unified treatment of some special classes of univalent functions[C]//Proceedings of the International Conference on Complex Analysis at the Nankai Institute of Mathematics. Tianjin: [s. n. ], 1992: 157-169.
    [2] SOKÓȽ J, STANKIEWICZ J. Radius of convexity of some subclasses of strongly starlike functions[J]. Zeszyty Naukowe Politechniki Rzeszowskiej Matematyka, 1996, 19: 101-105. http://www.researchgate.net/profile/Janusz_Sokol/publication/267137022_Radius_of_convexity_of_some_subclasses_of_strongly_starlike_functions/links/54980b460cf2c5a7e3428aad.pdf
    [3] MENDIRATTA R, NAGPAL S, RAVICHANDRAN V. A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli[J]. International Journal of Mathematics, 2014, 25(9): 1-17.
    [4] MENDIRATTA R, NAGPAL S, RAVICHANDRAN V. On a subclass of strongly starlike functions associated with exponential function[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38: 365-386. doi: 10.1007/s40840-014-0026-8
    [5] POMMERENKE C H. On the coeffcients and Hankel determinants of univalent functions[J]. Journal of London Mathematical Society, 1966, 41: 111-122.
    [6] FEKETE M, SZEGÖ G. Eine benberkung über ungerada schlichte funktionen[J]. Journal of the London Mathematical Society, 1933, 8(2): 85-89. doi: 10.1112/jlms/s1-8.2.85/abstract
    [7] KOEPF W. On the Fekete-Szegö problem for close-to-convex functions[J]. American Mathematical Society, 1987, 101: 89-95.
    [8] KOEPF W. On the Fekete-Szegö problem for close-to-convex functions Ⅱ[J]. Archiv Der Mathematik, 1987, 49: 420-433. doi: 10.1007/BF01194100
    [9] SRIVASTAVA H M, HUSSAIN S A, RAZA M, et al. The Fekete-Szegö functional for a subclass of analytic functions associated with quasi-subordination[J]. Carpathian Journal of Mathematics, 2018, 34(1): 103-113. doi: 10.37193/CJM.2018.01.11
    [10] SRIVASTAVA H M, MISHRA A K, DAS M K. The Fekete-Szegö problem for a subclass of close-to-convex functions[J]. Complex Variables, Theory and Application, 2001, 44(2): 145-163. doi: 10.1080/17476930108815351
    [11] TANG H, SRIVAATAVA H M, SIVASUBRAMANIAN S, et al. The Fekete-Szegö functional problems for some classes of m-fold symmetric bi-univalent functions[J]. Journal of Mathematical Inequalities, 2016, 10(4): 1063-1092.
    [12] ZHANG H Y, TANG H, NIU X M. Third-order Hankel determinant for certain class of analytic functions related with exponential function[J]. Symmetry, 2018, 10(10): 501-508. doi: 10.3390/sym10100501
    [13] SHI L, SRIVASTAVA H M, ARIF M, et al. An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function[J]. Symmetry, 2019, 11(5): 598-611. doi: 10.3390/sym11050598
    [14] ZAPRAWA P. Hankel determinants for univalent functions related to the exponential function[J]. Symmetry, 2019, 11(10): 1211-1220. doi: 10.3390/sym11101211
    [15] BABALOLA K O. On H3(1) Hankel determinant for some classes of univalent functions[J]. Inequality Theory and Applications, 2010, 6: 1-7. http://arxiv.org/abs/0910.3779
    [16] BANSAL D. Upper bound of second Hankel determinant for a new class of analytic functions[J]. Applied Mathematics Letters, 2013, 26(1): 103-107. doi: 10.1016/j.aml.2012.04.002
    [17] BANSAL D, MAHARANA S, PRAJAPAT J K. Third order Hankel determinant for certain univalent functions[J]. Journal of Korean Mathematical Society, 2015, 52(6): 1139-1148. doi: 10.4134/JKMS.2015.52.6.1139
    [18] ÇAǦLAR M, DENİZ E, SRIVASTAVA H M. Second Hankel determinant for certain subclasses of bi-univalent functions[J]. Turkish Journal of Mathematics, 2017, 41: 694-706. doi: 10.3906/mat-1602-25
    [19] JANTENG A, HALIM S A, DARUS M. Coefficient in-equality for a function whose derivative has a positive real part[J]. Journal of Inequalities in Pure and Applied, 2006, 7(2): 50/1-5.
    [20] JANTENG A, HALIM S A, DARUS M. Hankel determinant for starlike and convex functions[J]. International Journal of Mathematics Analysis, 2007, 13(1): 619-625.
    [21] LEE S K, RAVICHANDRAN V, SUBRAMANIAM S. Bou-nds for the second Hankel determinant of certain univalent functions[J]. Journal of Inequalities and Applications, 2013, 2013(281): 1-17.
    [22] RAZA M, MALIK S N. Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of bernoulli[J]. Journal of Inequalities and Applications, 2013, 2013(412): 1-8.
    [23] SRIVASTAVA H M, ALTINKAYA S, YALCIN S. Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator[J]. Filomat, 2018, 32(2): 503-516. doi: 10.2298/FIL1802503S
    [24] 张海燕, 汤获, 马丽娜. 一类解析函数的三阶Hankel行列式的上界估计[J]. 纯粹数学与应用数学, 2017, 33(2): 211-220. doi: 10.3969/j.issn.1008-5513.2017.02.013

    ZHANG H Y, TANG H, MA L N. Upper bound of third Hankel determinant for a class of analytic functions[J]. Pure and Applied Mathematics, 2017, 33(2): 211-220. doi: 10.3969/j.issn.1008-5513.2017.02.013
    [25] DUREN P L. Harmonic mappings in plane[M]. New York: Cambridge University Press, 2004.
    [26] LIBERA R J, ZLOTKIEWICZ E J. Coefficient bounds for the inverse of a function with derivative in P[J]. Proceedings of the American Mathematica, 1983, 87(2): 251-257.
    [27] RAVICHNDRAN V, VERMA S. Bound for the fifth coeffcient of certain starlike functions[J]. Comptes Rendus Mathematique, 2015, 353(6): 505-510. doi: 10.1016/j.crma.2015.03.003
    [28] POMMERENKE C. Univalent functions[M]. Providence: American Mathematical Society, 1975.
  • 加载中
计量
  • 文章访问数:  85
  • HTML全文浏览量:  43
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回