留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

循环荷载对小叶锦鸡儿根系力学特性的影响

杨东旭 刘静 王勇轶 袁亚楠

杨东旭, 刘静, 王勇轶, 袁亚楠. 循环荷载对小叶锦鸡儿根系力学特性的影响[J]. 华南师范大学学报(自然科学版), 2021, 53(4): 55-60. doi: 10.6054/j.jscnun.2021058
引用本文: 杨东旭, 刘静, 王勇轶, 袁亚楠. 循环荷载对小叶锦鸡儿根系力学特性的影响[J]. 华南师范大学学报(自然科学版), 2021, 53(4): 55-60. doi: 10.6054/j.jscnun.2021058
YANG Dongxu, LIU Jing, WANG Yongyi, YUAN Yanan. The Effect of Cyclic Loading on Root Mechanical Properties of Caragana microphylla[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(4): 55-60. doi: 10.6054/j.jscnun.2021058
Citation: YANG Dongxu, LIU Jing, WANG Yongyi, YUAN Yanan. The Effect of Cyclic Loading on Root Mechanical Properties of Caragana microphylla[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(4): 55-60. doi: 10.6054/j.jscnun.2021058

循环荷载对小叶锦鸡儿根系力学特性的影响

doi: 10.6054/j.jscnun.2021058
基金项目: 

内蒙古自然科学基金项目 2018MS05004

详细信息
    通讯作者:

    刘静,Email:ljing58@126.com

  • 中图分类号: S157.2

The Effect of Cyclic Loading on Root Mechanical Properties of Caragana microphylla

  • 摘要: 为了探究干旱、半干旱生态脆弱区植被根系承受循环荷载后的固土效能,以1.00≤d≤4.00 mm径级范围内的小叶锦鸡儿(Caragana microphylla)直根段为对象,采用TY8000伺服式强力机研究承受50次循环荷载后的根系抗拉力学特性. 结果表明:1.00≤d≤2.00、2.00 < d≤3.00和3.00 < d≤4.00 mm直根段承受单次荷载极限力30%的循环荷载后,极限力分别为(134.42±14.17)、(285.24±27.65)、(420.24±27.36) N,较单次荷载分别增加了48.20%、42.71%、29.07%;承受单次荷载极限力70%的循环荷载后,极限力分别为(70.53±10.3)、(155.15±21.04)、(287.84±22.65) N,较单次荷载分别减少了22.23%、22.37%和11.58%. 承受循环荷载后,各径级抗拉力及抗拉强度与单次荷载的差异具有统计学意义(P < 0.05). 试验根极限抗拉力和极限抗拉强度与其直径分别呈幂函数正相关、负相关,说明适度的循环荷载会对根系固土能力有促进作用,过度循环荷载会对根系造成损伤,降低其抗拉特性. 灰色关联分析发现:直径、加载次数、加载速度均对根系力学特性产生影响.
  • 图  1  小叶锦鸡儿直根段轴向拉力示意图

    Figure  1.  The schematic diagram of axial tension of straight root section of Caragana microphylla

    图  2  小叶锦鸡儿直根段承受循环荷载前后的抗拉力、抗拉强度与直径回归曲线

    Figure  2.  The regression curves of tensile tension, tensile strength and diameter of straight root section of Caragana microphylla before and after cyclic loading

    表  1  小叶锦鸡儿直根段承受循环荷载前后力学特性差异

    Table  1.   The mechanical properties of straight root section of Caragana microphylla before and after cyclic loading

    荷载类型 径级/mm 平均直径/mm 极限抗拉力/N 抗拉强度/MPa
    平均值±标准差 极小值 中值 极大值
    单次荷载 1.00≤d≤2.00 1.56±0.05 90.7±12.99Ba 68 90 134 48.68±0.60Ba
    2.00 < d≤3.00 2.52±0.07 199.87±20.9Bb 150 201 248 40.67±0.59Bb
    3.00 < d≤4.00 3.39±0.03 325.57±23.23Bc 296 319 372 36.54±0.41Bc
    循环荷载(30%) 1.00≤d≤2.00 1.61±0.05 134.42±14.17Aa 88 129 198 66.35±0.83Aa
    2.00 < d≤3.00 2.56±0.07 285.24±27.65Ab 218 267 419 55.28±0.84Ab
    3.00 < d≤4.00 3.27±0.03 420.24±27.36Ac 385 413 471 50.39±0.39Ac
    循环荷载(70%) 1.00≤d≤2.00 1.61±0.05 70.53±10.32Ca 49 70 102 37.14±0.69Ca
    2.00 < d≤3.00 2.48±0.07 155.15±21.04Cb 90 156 224 32.60±0.33Cb
    3.00 < d≤4.00 3.52±0.03 287.84±22.65Cc 201 282 355 30.07±0.48Cc
    注:同列不同大写字母代表相同径级不同荷载间差异性显著(P < 0.05);同列不同小写字母代表不同径级相同荷载下差异性显著(P < 0.05).
    下载: 导出CSV

    表  2  不同加载速度下根系力学特性差异性检验

    Table  2.   The difference test of mechanical properties under different loading speeds

    力学特性 加载速度/(mm·min-1) 荷载类型/% Pr>f 显著性
    抗拉力 20 30 0.197 4 A
    70 0.157 2 A
    200 30 0.187 8 A
    70 < 0.000 1 B
    抗拉强度 20 30 0.234 3 A
    70 0.201 1 A
    200 30 0.245 5 A
    70 < 0.000 1 B
    注:B代表力学特性间差异性具有统计学意义(P < 0.05);A代表同种荷载不同加载速度下,力学特性间差异性不具有统计学意义.
    下载: 导出CSV

    表  3  小叶锦鸡儿各径级直根加载次数统计

    Table  3.   The loading times of straight root section of Caragana microphylla in each diameter class

    受力程度 径级/mm < 50次的百分比/% =50次的百分比/%
    循环荷载(30%) 1.00≤d≤2.00 20 80
    2.00 < d≤3.00 27 73
    3.00 < d≤4.00 40 60
    循环荷载(70%) 1.00≤d≤2.00 50 50
    2.00 < d≤3.00 60 40
    3.00 < d≤4.00 57 43
    下载: 导出CSV

    表  4  循环荷载下根系抗拉力影响因子的原始数据及关联分析

    Table  4.   The source data and correlation analysis of root tensile strength factors under cyclic loading

    荷载类型 直径(均值)/mm 加载次数(均值)/次 加载速度/(mm·min-1)
    1.00≤d≤2.00 2.00 < d≤3.00 3.00 < d≤4.00 1.00≤d≤2.00 mm 2.00 < d≤3.00 mm 3.00 < d≤4.00 mm
    原始数据 循环荷载30% 1.61 2.57 3.28 51 52 51 20
    循环荷载70% 1.62 2.49 3.67 52 51 51 20
    关联度 循环荷载30% 0.754 0.643 0.641
    循环荷载70% 0.743 0.664 0.663
    关联序 1 2 3
    注:此表为小叶锦鸡儿直根承受30%和70%循环荷载时各个径级的平均直径、平均加载次数以及加载速度原始数据记录;关联度为同种循环荷载下,不同影响因子与不同荷载类型下根系抗拉力的关联度.
    下载: 导出CSV
  • [1] 乔娜, 余芹芹, 卢海静, 等. 寒旱环境植物护坡力学效应与根系化学成分响应[J]. 水土保持研究, 2012, 19(3): 108-113. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201203023.htm

    QIAO N, YU Q Q, LU H J, et al. Research on mechanical effects of the vegetation on slope protection and response of root chemical compositions in cold and arid environment[J]. Research of Soil and Water Conservation, 2012, 19(3): 108-113. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201203023.htm
    [2] 郑力. 植物根系的加筋与锚固作用对边坡稳定性的影响[D]. 重庆: 西南大学, 2018.

    ZHENG L. Effects of reinforcement and anchoring of plant roots on slope stability[D]. Chongqin: Southwest University, 2018.
    [3] BISCHETTI G B, CHIARADIA E A, SIMONATO T, et al. Root strength and root area ratio of forest species in Lombardy (Northern Italy)[J]. Plant and Soil, 2005, 278 (1): 11-22. http://jxb.oxfordjournals.org/external-ref?access_num=10.1007/s11104-005-0605-4&link_type=DOI
    [4] TOSI M. Root tensile strength relationships and their slope stability implications of three shrub species in the Northern Apennines (Italy)[J]. Geomorphology, 2007, 87(4): 268-283. doi: 10.1016/j.geomorph.2006.09.019
    [5] 薛杨, 赵洋毅, 段旭, 等. 磨盘山4种典型护坡植物根系特征及其对土壤含水率的影响[J]. 福建农林大学学报(自然科学版), 2019, 48(4): 501-509. https://www.cnki.com.cn/Article/CJFDTOTAL-FJND201904015.htm

    XUE Y, ZHAO Y Y, DUAN X, et al. Root distribution characteristics of 4 typical slope protection plants and their influences on soil moisture content in the Mopan Mountain[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2019, 48(4): 501-509. https://www.cnki.com.cn/Article/CJFDTOTAL-FJND201904015.htm
    [6] 武艺儒, 刘静, 张欣, 等. 3种灌木直根抗剪特性及其与化学组分的关系[J]. 干旱区资源与环境, 2019, 33(4): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201904020.htm

    WU Y R, LIU J, ZHANG X, et al. Relationship between anti-shear characteristics of root and its responses to their chemical components for three shrubs[J]. Journal of Arid Land Resources and Environment, 2019, 33(4): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201904020.htm
    [7] 王萍花. 华北四种常见乔木根系固土的力学特性研究[D]. 北京: 北京林业大学, 2012.

    WANG P H. Study on tensile mechanical characteristics of four common arbor root system[D]. Beijing: Beijing Forestry University, 2012.
    [8] 李可, 朱海丽, 宋路, 等. 青藏高原两种典型植物根系抗拉特性与其微观结构的关系[J]. 水土保持研究, 2018, 25(2): 240-249. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201802038.htm

    LI K, ZHU H L, SONG L, et al. Relationship between tensile properties and microstructure of two typical plant roots in the Qinghai-tibet plateau[J]. Study on Soil and Water Conservation, 2018, 25(2): 240-249. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201802038.htm
    [9] 周林虎, 刘昌义, 胡夏嵩, 等. 寒旱区4种草本根系力学特性试验研究[J]. 人民黄河, 2019, 41(5): 90-95. doi: 10.3969/j.issn.1000-1379.2019.05.020

    ZHOU L H, LIU C Y, HU X S, et al. Experimental study on the mechanical properties of four herbs roots in cold-arid area[J]. Yellow River, 2019, 41(5): 90-95. doi: 10.3969/j.issn.1000-1379.2019.05.020
    [10] 郭维俊, 黄高宝, 王芬娥, 等. 小麦根系力学性能及微观结构研究[J]. 农业机械学报, 2010, 41(1): 92-95. doi: 10.3969/j.issn.1000-1298.2010.01.018

    GUO W J, HUANG G B, WANG F E, et al. Mechanical properties and micro-structure of wheat roots[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(1): 92-95. doi: 10.3969/j.issn.1000-1298.2010.01.018
    [11] 吕春娟, 陈丽华, 赵红华, 等. 油松根系的轴向疲劳性能研究[J]. 摩擦学学报, 2013, 33(6): 578-585. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201306007.htm

    LU C J, CHEN L H, ZHAO H H, et al. Axial fatigue properties of pinus tabulaeformis root[J]. Tribology, 2013, 33(6): 578-585. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201306007.htm
    [12] 穆枫, 程子敏, 李玉灵, 等. 太行山区林木根系单根固土生物力学及疲劳特性研究[J]. 西北林学院学报, 2019, 34(2): 14-21, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-XBLX201902003.htm

    MU F, CHENG Z M, LI Y L, et al. Study on the biomechanics and fatigue characteristics of single root soil and soil of tree roots in Taihang mountain[J]. Journal of Northwest Forestry University, 2019, 34(2): 14-21, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-XBLX201902003.htm
    [13] 牛西午. 柠条生物学特性研究[J]. 华北农学报, 1998, 14(4): 122-129. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNB804.022.htm

    NIU X W. Biological character of cultivars in Caragana[J]. Acta Agriculturae Boreali-Sinica, 1998, 14(4): 122-129. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNB804.022.htm
    [14] 王博. 半干旱区水土保持灌木根系拉拔损伤后的自修复机制[D]. 呼和浩特: 内蒙古农业大学, 2019.

    WANG B. Mechanisms of self-healing after drawing damaged of soil and water conservation shrub roots in semi-arid areas[D]. Huhehaote: Inner Mongolia Agricultural University, 2019.
    [15] 蒋坤云, 陈丽华, 杨苑君, 等. 华北油松、落叶松根系抗拉强度与其微观结构的相关性研究[J]. 水土保持学报, 2013, 27(2): 8-12, 19. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201302003.htm

    JIANG K Y, CHEN L H, YANG Y J, et al. Relationship between tensile strength and selected anatomical features of two different conifer species' roots in North China[J]. Journal of Soil and Water Conservation, 2013, 27(2): 8-12, 19. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201302003.htm
    [16] MARIE G, ALEXIA S, FRANC K S, et al. The influence of cellulose content on tensile strength in tree roots[J]. Kluwer Academic Publishers, 2005, 278(1/2): 1-9. http://aob.oxfordjournals.org/external-ref?access_num=10.1007/s11104-005-8768-6&link_type=DOI
    [17] 张乔艳, 唐丽霞, 潘露, 等. 基于根系化学组成的抗拉力学特性分析[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLY202001026.htm

    ZHANG Q Y, TANG L X, PAN L, et al. Tensile mechanical properties of roots based on chemical composition[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(1): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLY202001026.htm
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  18
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-19
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回