留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

K2FeO4石墨化生物质多孔炭的制备及其电容性能

陈妹琼 郭文显 陈蒙蒙 张敏 程发良

陈妹琼, 郭文显, 陈蒙蒙, 张敏, 程发良. K2FeO4石墨化生物质多孔炭的制备及其电容性能[J]. 华南师范大学学报(自然科学版), 2021, 53(4): 31-39. doi: 10.6054/j.jscnun.2021055
引用本文: 陈妹琼, 郭文显, 陈蒙蒙, 张敏, 程发良. K2FeO4石墨化生物质多孔炭的制备及其电容性能[J]. 华南师范大学学报(自然科学版), 2021, 53(4): 31-39. doi: 10.6054/j.jscnun.2021055
CHEN Meiqiong, GUO Wenxian, CHEN Mengmeng, ZHANG Min, CHENG Faliang. The Preparation and Capacitance Performance of the K2FeO4-activated Biomass Porous Carbon[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(4): 31-39. doi: 10.6054/j.jscnun.2021055
Citation: CHEN Meiqiong, GUO Wenxian, CHEN Mengmeng, ZHANG Min, CHENG Faliang. The Preparation and Capacitance Performance of the K2FeO4-activated Biomass Porous Carbon[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(4): 31-39. doi: 10.6054/j.jscnun.2021055

K2FeO4石墨化生物质多孔炭的制备及其电容性能

doi: 10.6054/j.jscnun.2021055
基金项目: 

国家自然科学基金项目 21775022

广东省基础与应用基础研究基金联合基金项目 2019A1515110314

广东省青年创新人才类项目 2016KQNCX221

东莞理工学院城市学院重大科研培育项目 2017YZD003Z

详细信息
    通讯作者:

    郭文显,Email: guowx@ccdgut.edu.cn

    程发良,Email: chengfl@dgut.edu.cn

  • 中图分类号: TQ152;O646

The Preparation and Capacitance Performance of the K2FeO4-activated Biomass Porous Carbon

  • 摘要: 采用K2FeO4浸泡和热处理相结合的方法制备了石墨化柚子皮多孔炭(GSPC). 通过扫描电子显微镜(SEM)、比表面积分析(BET)、X射线衍射(XRD)、X射线光电子能谱(XPS)和拉曼光谱(Raman)对材料的形貌和组成进行表征. 使用循环伏安法(CV)、交流阻抗法(EIS)和恒流充放电法(GCD)研究了GSPC的电容性能. 结果表明:石墨化后材料的比表面积由75.91 m2/g增大到619.78 m2/g,孔容积由0.192 cm3/g增大到0.425 cm3/g;GSPC具有出色的双电层电容性能,在1 A/g的电流密度下,比电容达254 F/g,且具有优异的倍率性能(7 A/g的电流密度下,电容保持率为74%). 此外,GSPC电极在100 mV/s下循环10 000次的比电容没有衰减,具有优异的循环稳定性. 此研究可为开发廉价的高性能生物质炭基材料提供新思路.
  • 图  1  SPC-800和GSPC-800的SEM图

    Figure  1.  The SEM images of SCP-800 and GSPC-800

    图  2  SPC-800和GSPC-800在77 K下的N2吸附脱附等温线和孔径分布图

    Figure  2.  The nitrogen adsorption isotherms and pore-width distribution of SCP-800 and GSPC-800 under 77 K

    图  3  SPC-800和GSPC-800的XRD图谱、XPS能谱、Raman光谱

    Figure  3.  The XRD, XPS and Raman spectra of SCP-800 and GSPC-800

    图  4  SPC-800和GSPC-800在不同扫速下的CV曲线

    Figure  4.  The CV curves of SPC-800 and GSPC-800

    图  5  SPC-800和GSPC-800在1 A/g下的充放电曲线及比电容和电流密度的关系

    Figure  5.  The GCD curves (obtained with 1A/g) and the relationship between current density and specific capacitance derived from GCD plots for SPC-800 and GSPC-800

    图  6  SPC-800和GSPC-800的Nyquist图

    Figure  6.  The Nyquist plots of SPC-800 and GSPC-800

    图  7  GSPC-800在100 mV/s下10 000次的循环稳定性

    Figure  7.  The cycling performance of GSPC-800 after 10 000 cycles at the scan rate of 100 mV/s

    图  8  不同样品的XPS能谱和XRD图谱

    Figure  8.  The XPS spectra and XRD pattern of different samples

    图  9  不同样品的N2吸附脱附等温线、孔径分布图、Raman光谱

    Figure  9.  The nitrogen adsorption isotherms, pore-width distribution and Raman patterns of different samples

    图  10  不同电极的比电容与扫描速率、电流密度的关系

    Figure  10.  The relationship between current density or scan rate and specific capacitance derived from GCD or CV plots for different samples

    图  11  不同电极的Nyquist图

    Figure  11.  The Nyquist plots of different electrodes

    表  1  不同样品的比表面积

    Table  1.   The BET surface area of different samples

    样品 BET多点比表面积/(m2·g-1) 吸附总孔容积/(cm3·g-1)
    GSPC-500 24.20 0.054
    GSPC-600 121.02 0.077
    GSPC-700 451.97 0.222
    GSPC-800 619.78 0.425
    下载: 导出CSV
  • [1] ZHOU M, BAHI A, ZHAO Y, et al. Enhancement of charge transport in interconnected lignin-derived carbon fibrous network for flexible battery-supercapacitor hybrid device[J]. Chemical Engineering Journal, 2021, 409: 128214/1-10. http://www.sciencedirect.com/science/article/pii/S1385894720343308
    [2] VAKROS J, MANARIOTIS I D, DRACOPOULOS V, et al. Biochar from spent malt rootlets and its application to an energy conversion and storage device[J]. Chemosensors, 2021, 9(3): 57/1-3. http://www.researchgate.net/publication/350295197_Biochar_from_Spent_Malt_Rootlets_and_Its_Application_to_an_Energy_Conversion_and_Storage_Device
    [3] THOMAS B, GENG S, SAIN M, et al. Hetero-porous, high-surface area green carbon aerogels for the next-generation energy storage applications[J]. Nanomaterials, 2021, 11(3): 653/1-19. http://www.researchgate.net/publication/349898086_Hetero-Porous_High-Surface_Area_Green_Carbon_Aerogels_for_the_Next-Generation_Energy_Storage_Applications
    [4] YU Z, TETARD L, ZHAI L, et al. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions[J]. Energy & Environmental Science, 2015, 8(3): 702-730. http://www.tandfonline.com/servlet/linkout?suffix=cit0009&dbid=16&doi=10.1080%2F1536383X.2016.1146708&key=10.1039%2FC4EE03229B
    [5] CHEN R, LI X, HUANG Q, et al. Self-assembled porous biomass carbon/rGO/nanocellulose hybrid aerogels for self-supporting supercapacitor electrodes[J]. Chemical Engineering Journal, 2021, 412: 128755/1-7. http://www.sciencedirect.com/science/article/pii/S1385894721003521
    [6] ZHANG L L, ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Review 2009, 38(9): 2520-2531. doi: 10.1039/b813846j
    [7] ZHANG P, MU J, GUO Z, et al. Watermelon peel-derived heteroatom-doped hierarchical porous carbon as a high-performance electrode material for supercapacitors[J]. ChemElectroChem, 2021, 8(6): 1196-1203. doi: 10.1002/celc.202100267
    [8] ZHANG C, ZENG J, XU C, et al. Electric double layer capacitors based on porous three-dimensional graphene materials for energy storage[J]. Journal of Electronic Materials, 2021, 50(6): 3043-3063. doi: 10.1007/s11664-021-08812-z
    [9] YANG B, ZHANG D, SHE W, et al. Remarkably improving the specific energy of supercapacitor based on a biomass-derived interconnected hierarchical porous carbon by using a newly-developed mixed alkaline aqueous electrolyte with widened operation voltage[J]. Journal of Power Sources, 2021, 492: 229666/1-12.
    [10] SELVARAJ A R, MUTHUSAMY A, INHO C, et al. Ultrahigh surface area biomass derived 3D hierarchical porous carbon nanosheet electrodes for high energy density supercapacitors[J]. Carbon, 2021, 174: 463-474. doi: 10.1016/j.carbon.2020.12.052
    [11] MERIN P, JOY P J, MURALIDHARAN M N, et al. Biomass-derived activated carbon for high-performance supercapacitor electrode applications[J]. Chemical Engineering & Technology, 2021, 44(5): 844-851.
    [12] GUO Y, QI J, JIANG Y, et al. Performance of electrical double layer capacitors with porous carbons derived from rice husk[J]. Materials Chemistry and Physics, 2003, 80(3): 704-709. doi: 10.1016/S0254-0584(03)00105-6
    [13] WANG J, LIU Q. Fungi-derived hierarchically porous carbons for high-performance supercapacitors[J]. RSC Advances, 2015, 5(6): 4396-4403. doi: 10.1039/C4RA13358G
    [14] SEVILLA M, SANCHÍS C, VALDÉS-SOLÍS T, et al. Direct synthesis of graphitic carbon nanostructures from saccharides and their use as electrocatalytic supports[J]. Carbon, 2008, 46(6): 931-939. doi: 10.1016/j.carbon.2008.02.019
    [15] WANG Q, NIE Y F, CHEN X Y, et al. Controllable synthesis of 2D amorphous carbon and partially graphitic carbon materials: Large improvement of electrochemical performance by the redox additive of sulfanilic acid azochromotrop in KOH electrolyte[J]. Electrochimica Acta, 2016, 200: 247-258. doi: 10.1016/j.electacta.2016.03.183
    [16] DEMIR M, KAHVECI Z, AKSOY B, et al. Graphitic biocarbon from metal-catalyzed hydrothermal carbonization of lignin[J]. Industrial & Engineering Chemistry Research, 2015, 54(43): 10731-10739. doi: 10.1021/acs.iecr.5b02614
    [17] GONG Y, LI D, LUO C, et al. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors[J]. Green Chemistry, 2017, 19(17): 4132-4140. doi: 10.1039/C7GC01681F
    [18] WANG J, KASKEL S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45): 23710/1-16. http://pubs.rsc.org/en/content/articlelanding/2012/jm/c2jm34066f
    [19] SHEN Y. Carbothermal synthesis of metal-functionalized nanostructures for energy and environmental applications[J]. Journal of Materials Chemistry A, 2015, 3(25): 13114-13188. http://pubs.rsc.org/en/content/articlelanding/2015/ta/c5ta01228g
    [20] LIU W J, TIAN K, HE Y R, et al. High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage[J]. Environmental Science & Technology, 2014, 48(23): 13951-13959. http://www.ncbi.nlm.nih.gov/pubmed/25372400
    [21] RAYMUNDO-PIERO E, AZAÑS P, CACCIAGUERRA T, et al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation[J]. Carbon, 2005, 43(4): 786-795. doi: 10.1016/j.carbon.2004.11.005
    [22] LOZANO-CASTELLÓ D, CALO J M, CAZORLA-AMORÓS D, et al., Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen[J]. Carbon, 2007, 45(13): 2529-2536. doi: 10.1016/j.carbon.2007.08.021
    [23] SEVILLA M, FUERTES A B. Catalytic graphitization of templated mesoporous carbons[J]. Carbon, 2006, 44(3): 468-474. doi: 10.1016/j.carbon.2005.08.019
    [24] SUN L, FU Y, TIAN C, et al. Isolated boron and nitrogen sites on porous graphitic carbon synthesized from nitrogen-containing chitosan for supercapacitors[J]. ChemSusChem, 2014, 7(6): 1637-1646. doi: 10.1002/cssc.201400048
    [25] FERRARI A C, MEYER J C, SCARDACI V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18): 187401/1-4. http://europepmc.org/abstract/med/17155573
    [26] ZHANG Z Y, XU X C. Nondestructive covalent functionalization of carbon nanotubes by selective oxidation of the original defects with K2FeO4[J]. Applied Surface Science, 2015, 346: 520-527. doi: 10.1016/j.apsusc.2015.04.026
    [27] HE X, LING P, QIU J, et al. Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density[J]. Journal of Power Sources, 2013, 240: 109-113. doi: 10.1016/j.jpowsour.2013.03.174
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  19
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-02
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回