留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Na+掺杂LiNbO3∶Pr3+荧光粉的制备及应力传感性能

董其铮 杨富鹏

董其铮, 杨富鹏. Na+掺杂LiNbO3∶Pr3+荧光粉的制备及应力传感性能[J]. 华南师范大学学报(自然科学版), 2021, 53(4): 24-30. doi: 10.6054/j.jscnun.2021054
引用本文: 董其铮, 杨富鹏. Na+掺杂LiNbO3∶Pr3+荧光粉的制备及应力传感性能[J]. 华南师范大学学报(自然科学版), 2021, 53(4): 24-30. doi: 10.6054/j.jscnun.2021054
DONG Qizheng, YANG Fupeng. The Preparation and Stress Sensing Properties of Na+-doped LiNbO3: Pr3+ Phosphors[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(4): 24-30. doi: 10.6054/j.jscnun.2021054
Citation: DONG Qizheng, YANG Fupeng. The Preparation and Stress Sensing Properties of Na+-doped LiNbO3: Pr3+ Phosphors[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(4): 24-30. doi: 10.6054/j.jscnun.2021054

Na+掺杂LiNbO3∶Pr3+荧光粉的制备及应力传感性能

doi: 10.6054/j.jscnun.2021054
基金项目: 

甘肃省重点研究发展计划项目 17JR7GA014

详细信息
    通讯作者:

    董其铮,Email: dongqzh@163.com

  • 中图分类号: TP383+.2

The Preparation and Stress Sensing Properties of Na+-doped LiNbO3: Pr3+ Phosphors

  • 摘要: 采用高温固相法制备了Na+掺杂的荧光粉Li1-xNaxNbO3∶Pr3+. 在不改变晶体结构的条件下,掺杂Na+提高了荧光粉Li1-xNaxNbO3∶Pr3+蓝色光激发的发射强度,其最佳掺杂计量比x=0.05. 将荧光粉负载到铝合金板上,对金属板施加拉力时,LiNbO3∶Pr3+的光致发光强度随应力的增大发生骤增现象. 随着x的增加,骤增现象逐渐消失,因为Na+的掺杂改变了Pr3+周围的不对称性,影响了LiNbO3∶Pr3+的力诱导发光特性.
  • 图  1  应力测试系统示意图

    Figure  1.  The schematic diagram of stress test system

    图  2  LiNbO3yPr3+红色荧光粉的XRD图谱

    注:y为Pr3+的物质的量分数.

    Figure  2.  The XRD pattern of LiNbO3yPr3+

    图  3  Li1-xNaxNbO3∶1.0%Pr3+的XRD图谱

    注:x=0,0.05,0.10,0.15.

    Figure  3.  The XRD pattern of Li1-xNaxNbO3: 1.0%Pr3+

    图  4  LiNbO3∶1.0%Pr3+荧光粉的SEM图

    Figure  4.  The SEM images of LiNbO3: 1.0%Pr3+ phosphors

    图  5  Li1-xNaxNbO3yPr3+样品的激发光谱及激发峰强度

    Figure  5.  The excitation spectra and the excitation intensity of Li1-xNaxNbO3yPr3+

    图  6  Li1-xNaxNbO3∶1.0%Pr3+的激发光谱及发射光谱

    Figure  6.  The excitation and emission spectra of Li1-xNaxNbO3∶1.0%Pr3+

    图  7  应力检测系统及样品

    注:a为LiNbO3∶1.0%Pr3+,b为Li0.95Na0.05NbO3∶1.0%Pr3+.

    Figure  7.  The stress detection system and sample

    图  8  LiNbO3∶1.0%Pr3+和Li0.95Na0.05NbO3∶1.0%Pr3+的应力发光曲线

    Figure  8.  The stress luminescence curves of LiNbO3: 1.0%Pr3+ and Li0.95Na0.05NbO3: 1.0%Pr3+

    图  9  LiNbO3∶1.0%Pr3+和Li0.95Na0.05NbO3∶1.0%Pr3+的发射峰强度随应力的变化

    Figure  9.  The change of emission intensity of LiNbO3: 1.0%Pr3+ and Li0.95Na0.05NbO3: 1.0%Pr3+ with stress

  • [1] 郑俊, 赵红旺, 朵兴茂. 应力应变测试方法综述[J]. 汽车科技, 2009(1): 5-8. doi: 10.3969/j.issn.1005-2550.2009.01.002

    ZHRENG J, ZHAO H W, DUO X M, Summary of stress and strain testing methods[J]. Automotive Technology, 2009(1): 5-8. doi: 10.3969/j.issn.1005-2550.2009.01.002
    [2] 王鹏, 张苗苗, 张宁超. 碳纤维复合材料的应变测量试验方法[J]. 科学技术与工程, 2018, 18(31): 138-142. doi: 10.3969/j.issn.1671-1815.2018.31.021

    WANG P, ZHANG M M, ZHANG N C. Strain measurement test method for carbon fiber composite materials[J]. Science Technology and Engineering, 2018, 18(31): 138-142. doi: 10.3969/j.issn.1671-1815.2018.31.021
    [3] HERNANDEZ C, GUPTA S K, ZUNIGA J, et al. Performance evaluation of Ce3+ doped flexible PVDF fibers for efficient optical pressure sensors[J]. Sensors and Actuators A: Physical, 2019, 298: 111595-111601. doi: 10.1016/j.sna.2019.111595
    [4] 何文, 石光. 一种具有聚集诱导发光效应的咔唑基二苯乙烯发光材料的合成及其性能研究[J]. 华南师范大学学报(自然科学版), 2013, 45(5): 59-63. http://journal-n.scnu.edu.cn/article/id/3220

    HE W, SHI G. Synthesis and performance study of a carbazole-based stilbene luminescent material with aggregation-induced luminescence effect[J]. Journal of South China Normal University(Natural Science Edition), 2013, 45(5): 59-63. http://journal-n.scnu.edu.cn/article/id/3220
    [5] 苏弘霖, 杨京莲, 高敏, 等. 力致变色吩噻嗪衍生物的合成及其对2, 4, 6-三硝基苯酚的荧光检测[J]. 华南师范大学学报(自然科学版), 2020, 45(5): 59-63. doi: 10.6054/j.jscnun.2020060

    SU H L, YANG J L, GAO M, et al. Synthesis of lizhichromic phenothiazine derivatives and their fluorescence detection of 2, 4, 6-Trinitrophenol[J]. Journal of South China Normal University (Natural Science Edition), 2020, 45(5): 59-63. doi: 10.6054/j.jscnun.2020060
    [6] WALLING J, PETERSON O. Tunable alexandrite lasers[J]. IEEE Journal of Quantum Electronics, 1980, 16(12): 1302-1315. doi: 10.1109/JQE.1980.1070430
    [7] ZHAO S, REN Z, ZHAO Y, et al. The application of Eu3+ photoluminescence piezo-spectroscopy in the LaMgAl11O19/8YSZ: Eu double-ceramic-layer coating system[J]. Journal of the European Ceramic Society, 2015, 35(1): 249-257. doi: 10.1016/j.jeurceramsoc.2014.07.029
    [8] MAO W G, CHEN Q, DAI C Y, et al. Effects of piezo-spectroscopic coefficients of 8 wt. % Y2O3 stabilized ZrO2 on residual stress measurement of thermal barrier coatings by Raman spectroscopy[J]. Surface & Coatings Technology, 2010, 204(21): 3573-3577. http://www.sciencedirect.com/science/article/pii/S0257897210002914
    [9] SINGH V, SIVARAMAIAH G, RAO J L, et al. Luminescence and EPR studies of Gd3+-activated strong UV-emitting CaZrO3 phosphors prepared via solution combustion method[J]. Journal of Electronic Materials, 2014, 43(9): 3486-3492. doi: 10.1007/s11664-014-3091-8
    [10] WANG S, YEAGER K M, WAN G, et al. Dynamics of CO2 in a karst catchment in the southwestern plateau, China[J]. Environmental Earth Sciences, 2015, 73(5): 2415-2427. doi: 10.1007/s12665-014-3591-0
    [11] BILLARD I. Lanthanide and actinide solution chemistry as studied by time-resolved emission spectroscopy[J]. Handbook on the Physics and Chemistry of Rare Earths, 2003, 33: 465-514. http://www.sciencedirect.com/science/article/pii/S016812730233006X
    [12] HE L, PAN L, LI W, et al. Spectral response characteristics of Eu3+ doped YAG-Al2O3 composite nanofibers reinforced aluminum matrix composites[J]. Optical Materials, 2020, 104: 109845-109850. doi: 10.1016/j.optmat.2020.109845
    [13] 吴立军, 李沈, 冯潘, 等. Ag纳米粒子增强CdS白光量子点器件的研制[J]. 华南师范大学学报(自然科学版), 2015, 47(6): 32-36. http://journal-n.scnu.edu.cn/article/id/3644

    WU L J, LI S, FENG P, et al. Development of Ag nanoparticles enhanced CdS white light quantum dot devices[J]. Journal of South China Normal University (Natural Science Edition), 2015, 47(6): 32-36. http://journal-n.scnu.edu.cn/article/id/3644
    [14] KAMIN'SKA A, SUCHOCKI A, ARIZMENDI L, et al. Spectroscopy of near-stoichiometric LiNbO3: MgO, Cr3+ crystals under high pressure[J]. Physical Review B, 2000, 621(16): 67586-10811. doi: 10.1103/PhysRevB.62.10802
    [15] TU D, XU C N, YOSHIDA A, et al. LiNbO3: Pr3+: a multipiezo material with simultaneous piezoelectricity and aensitive piezoluminescence[J]. Advanced Materials, 2017, 29(22): 1606914/1-4. http://www.ncbi.nlm.nih.gov/pubmed/28370452
    [16] WEI Y, WU Z, JIA Y, et al. Dual-enhancement of ferro-piezoelectric and photoluminescent performance in Pr3+ doped (K0.5Na0.5)NbO3 lead-free ceramics[J]. Applied Physics Letters, 2014, 102(58): 221-230. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6868180
    [17] 高世杰, 王华, 张珊珊, 等. Na2Ca2.92Si6O16: 0.08Eu3+荧光粉的制备及其发光特性研究[J]. 华南师范大学学报(自然科学版), 2019, 51(4): 21-25. doi: 10.6054/j.jscnun.2019059

    GAO S J, WANG H, ZHANG S S, et al. Preparation of Na2Ca2.92Si6O16: 0.08Eu3+ phosphor and its luminescence characteristics[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(4): 21-25. doi: 10.6054/j.jscnun.2019059
    [18] 王泽忠. 稀土荧光/聚碳酸酯加工可行性探讨及其荧光性能研究[J]. 华南师范大学学报(自然科学版), 2015, 47(1): 32-37. doi: 10.6054/j.jscnun.2014.06.016

    WANG Z Z. Study on the feasibility of rare earth fluorescence/polycarbonate processing and its fluorescence performance[J]. Journal of South China Normal University (Natural Science Edition), 2015, 47(1): 32-37. doi: 10.6054/j.jscnun.2014.06.016
    [19] YE H, WANG X, FANG H, et al. Intense piezoluminescence in LiTaO3 phosphors doped with Pr3+ ions[J]. Ceramics International, 2019, 68: 18-188. http://www.sciencedirect.com/science/article/pii/S0272884219301993
    [20] BOUTINAUD P, SARAKHA L, MAHIOU R. NaNbO3: Pr3+: a new red phosphor showing persistent luminescence[J]. Journal of Physics Condensed Matter, 2009, 21(2): 025901/1-9. http://www.ncbi.nlm.nih.gov/pubmed/21813990
    [21] LI L, CASTAING V, RYTZ D, et al. Tunable trap depth for persistent luminescence by cationic substitution in Pr3+: K1-xNaxNbO3 perovskites[J]. Journal of the American Ceramic Society, 2018, 78(2): 12-21. doi: 10.1111/jace.16116
    [22] CHENG L I, KE W, YAO F H, et al. Composition inhomogeneity due to alkaline volatilization in Li cmodified (K, Na)NbO3 lead ree piezoceramics[J]. Journal of the American Ceramic Society, 2013, 96(32): 420-429. http://www.ingentaconnect.com/content/bsc/jace/2013/00000096/00000009/art00002
    [23] SÁNCHEZ-ALEJO M A, RODRÍGUEZ F, BARREDA-ARGVESO J A, et al. Photoluminescence study of LiNb-O3: Cr3+, W4+ at high pressure: pressure dependence of spectroscopic parameters and local structure of Cr3+[J]. Optical Materials, 2016, 60: 94-100. doi: 10.1016/j.optmat.2016.07.013
    [24] MARESCHAL J C, JAUPART C. Variations of surface heat flow and lithospheric thermal structure beneath the North American craton[J]. Earth and Planetary Science Letters, 2004, 223(2): 65-77. http://www.sciencedirect.com/science/article/pii/S0012821X04002389
    [25] CHENG X, YUAN C, LEI S, et al. Effects of pressure on the emission of CaWO4: Eu3+ phosphor[J]. Optical Materials, 2014, 37: 58-65. http://www.sciencedirect.com/science/article/pii/S0925346714002857
    [26] HARA H, XU C N, WANG R P, et al. Control of crystal structure and performance evaluation of multi-piezo material of Li1-xNaxNbO3: Pr3+[J]. Journal of Ceramic Society of Japan, 2020, 128(8): 518-522. http://www.researchgate.net/publication/343374050_Control_of_crystal_structure_and_performance_evaluation_of_multi-piezo_material_of_Li1-xNaxNbO3Pr3
  • 加载中
图(9)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  23
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回