留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双凹面聚焦超声波场中悬浮粒子操控原理与实验仿真

唐小煜 严雅琳 黎廷丰 朱琳琳 黎铭 蔡伟博

唐小煜, 严雅琳, 黎廷丰, 朱琳琳, 黎铭, 蔡伟博. 双凹面聚焦超声波场中悬浮粒子操控原理与实验仿真[J]. 华南师范大学学报(自然科学版), 2021, 53(4): 17-23. doi: 10.6054/j.jscnun.2021053
引用本文: 唐小煜, 严雅琳, 黎廷丰, 朱琳琳, 黎铭, 蔡伟博. 双凹面聚焦超声波场中悬浮粒子操控原理与实验仿真[J]. 华南师范大学学报(自然科学版), 2021, 53(4): 17-23. doi: 10.6054/j.jscnun.2021053
TANG Xiaoyu, YAN Yalin, LI Tingfeng, ZHU Linlin, LI Ming, CAI Weibo. The Mechanism and Simulation of Suspended Particle Manipulation in a Double Concave Focused Ultrasonic Field[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(4): 17-23. doi: 10.6054/j.jscnun.2021053
Citation: TANG Xiaoyu, YAN Yalin, LI Tingfeng, ZHU Linlin, LI Ming, CAI Weibo. The Mechanism and Simulation of Suspended Particle Manipulation in a Double Concave Focused Ultrasonic Field[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(4): 17-23. doi: 10.6054/j.jscnun.2021053

双凹面聚焦超声波场中悬浮粒子操控原理与实验仿真

doi: 10.6054/j.jscnun.2021053
基金项目: 

国家自然科学基金项目 61371176

广州市高校创新创业教育项目 2019HD206

广东省大学生创新创业训练项目 S202010574090

广东省高校辅导员队伍建设专项课题 2019FDY022

详细信息
    通讯作者:

    唐小煜,Email: tangxy@scnu.edu.cn

  • 中图分类号: TP273+.2;O422.5

The Mechanism and Simulation of Suspended Particle Manipulation in a Double Concave Focused Ultrasonic Field

  • 摘要: 为提高聚焦超声波场的悬浮能力以及拓宽悬浮粒子的移动区域, 研究了超声波场中声压大小的计算公式以及凹球面阵列中阵元的延迟时间与聚焦点位置的关系式, 并运用COMSOL多物理场软件进行仿真验证. 通过搭建双凹球面超声波阵列悬浮装置, 控制发射极信号相位实现了悬浮粒子在竖直方向上的移动, 实验中粒子的运动轨迹与仿真结果有较好的一致性. 结果表明:双凹球面超声波阵列声场声压更强、聚焦性更好, 且可通过对阵元相位信号的控制实现悬浮粒子在二维平面的移动.
  • 图  1  圆形活塞换能器声场坐标示意图

    Figure  1.  The sound field coordinates of a circular piston transducer

    图  2  信号相位延迟及驻波场的变化

    Figure  2.  The diagram of signal phase delay and the change of standing wave field

    图  3  相控阵几何示意图

    Figure  3.  The schematic diagram of phased array geometry

    图  4  平面阵列模型

    Figure  4.  The plane array model

    图  5  凹球面阵列模型

    Figure  5.  The model of concave spherical array

    图  6  超声阵列装置

    Figure  6.  The ultrasonic array device

    图  7  各模型声压分布对比图

    Figure  7.  The comparison diagram of sound pressure distribution of each model

    图  8  凹球面阵列二维模型及驻波声场中的波节移动图

    Figure  8.  The two-dimensional model of concave spherical array and the motion diagram of wave node in standing wave sound field

    图  9  不同聚焦点的声压分布图

    Figure  9.  The sound pressure distribution at different focus points

    图  10  超声波相位移动时小球沿竖直方向悬浮位置的实验真、仿真值及其偏差

    Figure  10.  The experimental and simulation curves and the error of the suspended position of the ball along the vertical direction during ultrasonic phase movement

    表  1  COMSOL仿真模型的相关参数

    Table  1.   The parameters of the COMSOL simulation model

    模型 高度/mm 边长/mm 曲率半径/mm 换能器半径/cm 换能器间距/cm
    平面阵列模型 51 30 2 1
    凹球面阵列模型 138 60 2 1
    下载: 导出CSV

    表  2  不同模型对应的最大声压值

    Table  2.   The maximum sound pressure values corresponding to different models

    声场类型 最大声压/kPa
    凹球面单端发射阵列 14.5
    凹球面双端发射阵列 44.8
    平面单端发射阵列 10.0
    平面双端发射阵列 15.0
    下载: 导出CSV
  • [1] 张泽辉, 刘康祺, 邸文丽, 等. 基于超声悬浮的液滴非接触操控及其动力学[J]. 中国科学: 物理学·力学·天文学, 2020, 50(10): 113-144. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202010012.htm

    ZHAUG Z H, LIU K Q, DI W L, et al. Non-contact droplet manipulation and its dynamics based on acoustic levitation[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2020, 50(10): 113-114. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202010012.htm
    [2] 臧雨宸. 声辐射力的原理与应用[J]. 邵阳学院学报(自然科学版), 2019, 16(4): 57-62. doi: 10.3969/j.issn.1672-7010.2019.04.009

    ZANG Y C. Principle and applications of acoustic radiation force[J]. Journal of Shaoyang University(Natural Science Edition), 2019, 16(4): 57-62. doi: 10.3969/j.issn.1672-7010.2019.04.009
    [3] DING X Y, LIN S S, KIRALY B, et al. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 190(28): 11105-11109. http://europepmc.org/articles/PMC3396524/
    [4] LAURELL T, PETERSON F, NILSSON A. Chip integrated strategies for acoustic separation and manipulation of cells and particles[J]. Chemical Society Reviews, 2007, 36(3): 492-506. doi: 10.1039/B601326K
    [5] 董瑞玲, 顾大勇, 朱玉兰, 等. 拉曼光谱技术在疟疾检测中的应用[J]. 中国热带医学, 2014, 14(10): 1270-1275. https://www.cnki.com.cn/Article/CJFDTOTAL-RDYX201410043.htm

    DONG R L, GU D Y, ZHU Y L, et al. Application of raman spectroscopy in malaria detection[J]. China Tropical Medicine, 2014, 14(10): 1270-1275. https://www.cnki.com.cn/Article/CJFDTOTAL-RDYX201410043.htm
    [6] YADAV S, GUPTA A. Parametric study of driver and reflector of single axis acoustic levitator using finite element method[J]. Acoustical Physics, 2020, 66(3): 242-249. doi: 10.1134/S1063771020030094
    [7] 李新波, 王英伟, 王宇昆, 等. 凹球面双发射极超声阵列悬浮能力研究[J]. 西安交通大学学报, 2018, 52(11): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201811016.htm

    LI X B, WANG Y W, WANG Y K, et al. Study on the suspension capacity of concave spherical double emitter ultrasonic array[J]. Journal of Xi'an Jiaotong University, 2018, 52(11): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201811016.htm
    [8] ANDRAD E, MARCO A, PÉRE Z, et al. Review of progress in acoustic levitation[J]. Brazilian Journal of Phy-sics, 2018, 48(2): 190-213. doi: 10.1007/s13538-017-0552-6
    [9] 张鹏, 高辉, 宋起超, 等. 基于双反射面声悬浮器的非接触传输方法[J]. 黑龙江工程学院学报(自然科学版), 2020, 34(2): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JTGZ202002002.htm

    ZHANG P, GAO H, SONG Q C, et al. Contactless transportation method based on acoustic levitator with double reflectors[J]. Journal of Heilongjiang Institute of Technology, 2020, 34(2): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JTGZ202002002.htm
    [10] OCHIAI Y, HOSHI T, REKIMOTO J. Three-dimensional mid-air Acoustic manipulation by ultrasonic phased Arrays[J]. PloS ONE, 2013, 9(5): e97590/1-10. http://europepmc.org/articles/PMC4029622
    [11] 张承忠, 叶邦彦, 曹云凤, 等. 小提琴共鸣箱振动特性的有限元仿真与实验研究[J]. 华南师范大学学报(自然科学版), 2014, 46(6): 40-46. http://journal-n.scnu.edu.cn/article/id/3292

    ZHANG C Z, YE B Y, CAO Y F, et al. Research on vibration of violin sounding box with finite element numerical simulation method and experiment[J]. Journal of South China Normal University(Natural Science Edition), 2014, 46(6): 40-46. http://journal-n.scnu.edu.cn/article/id/3292
    [12] 蒙海英. 基于MATLAB的超声波声场模拟及可视化研究[D]. 大连: 大连理工大学, 2008.

    WENG H Y. Investigation on simulation and visibility of ultrasonic field based on MATLAB[D]. Dalian: Dalian University of Technology, 2008.
    [13] 庄龙, 吴立群, 杜锡标, 等. 基于超声复合场的空间悬浮微粒任意点输运方法[J]. 中国机械工程, 2015, 26(22): 3040-3045, 3050. doi: 10.3969/j.issn.1004-132X.2015.22.010

    ZHUANG L, WU L Q, DU X B, et al. Approach to arbitrary transportation of suspended particles based on ultrasonic composite field[J]. China Mechanical Engineering, 2015, 26(22): 3040-3045, 3050. doi: 10.3969/j.issn.1004-132X.2015.22.010
    [14] 范皓然. 基于单轴式超声悬浮系统的复杂声场的构建[D]. 西安: 陕西师范大学, 2017.

    FAN H R. Construction of complex sound field based on uniaxial ultrasonic suspension system[D]. Xi'an: Shanxi Normal University, 2017.
    [15] 凌浩, 尚禹, 桂志国, 等. 超声驻波悬浮特性仿真研究[J]. 测试技术学报, 2020, 34(4): 311-315. doi: 10.3969/j.issn.1671-7449.2020.04.006

    LING H, SHANG Y, GUI Z G, et al. Simulation study on characteristics of ultrasonic standing wave suspension[J]. Journal of Test and Measurement Technology, 2020, 34(4): 311-315. doi: 10.3969/j.issn.1671-7449.2020.04.006
    [16] SUKHANOV D Y, EMELYANOV F S. Three-dimensional acoustic levitation of particles in the field of phased arrays of ultrasonic vibrators[J]. Russian Physics Journal, 2020, 63(1): 258-262.
    [17] AYUMU W, KOJI H, YUTAKA A. Contactless fluid manipulation in air: droplet coalescence and active mixing by acoustic levitation[J]. Scientific Reports, 2018, 8(1): 10221-10221. doi: 10.1038/s41598-018-28451-5
    [18] 金硕, 严琪琪, 李成翊, 等. 驻波声场中悬浮临界密度及稳定性研究[J]. 大学物理, 2020, 39(5): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DXWL202005006.htm

    JING S, YAN Q Q, LI C Y, et al. Study of the critical density and stability of suspension in standing wave sound field[J]. College Physics, 2020, 39(5): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DXWL202005006.htm
    [19] MARZO A, BARNES A, DRINKWATER B W. TinyLev: a multi-emitter single-axis acoustic levitator[J]. The Review of Scientific Instruments, 2017, 88(8): 085105/1-6. http://europepmc.org/abstract/MED/28863691
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  475
  • HTML全文浏览量:  212
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-23
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回