留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过硫酸盐增强ZnO@N, C-Co3O4光电催化降解四溴双酚A的性能研究

李亚萍 孙祥林 陈晓 廖雨欣 李鑫 唐一鸣 李来胜

李亚萍, 孙祥林, 陈晓, 廖雨欣, 李鑫, 唐一鸣, 李来胜. 过硫酸盐增强ZnO@N, C-Co3O4光电催化降解四溴双酚A的性能研究[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 43-53. doi: 10.6054/j.jscnun.2021042
引用本文: 李亚萍, 孙祥林, 陈晓, 廖雨欣, 李鑫, 唐一鸣, 李来胜. 过硫酸盐增强ZnO@N, C-Co3O4光电催化降解四溴双酚A的性能研究[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 43-53. doi: 10.6054/j.jscnun.2021042
LI Yaping, SUN Xianglin, CHEN Xiao, LIAO Yuxin, LI Xin, TANG Yiming, LI Laisheng. The Photoelectrocatalytic Degradation of Tetrabromobisphenol A with Persulfate-enhanced ZnO@N, C-Co3O4[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(3): 43-53. doi: 10.6054/j.jscnun.2021042
Citation: LI Yaping, SUN Xianglin, CHEN Xiao, LIAO Yuxin, LI Xin, TANG Yiming, LI Laisheng. The Photoelectrocatalytic Degradation of Tetrabromobisphenol A with Persulfate-enhanced ZnO@N, C-Co3O4[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(3): 43-53. doi: 10.6054/j.jscnun.2021042

过硫酸盐增强ZnO@N, C-Co3O4光电催化降解四溴双酚A的性能研究

doi: 10.6054/j.jscnun.2021042
基金项目: 

国家自然科学基金项目 52000079

广东省自然科学基金项目 2017A030310420

广东省自然科学基金项目 2019A1515012202

广州市科技计划项目 202102020355

详细信息
    通讯作者:

    唐一鸣,Email: y.tang@m.scnu.edu.cn

  • 中图分类号: TQ426;O643.36

The Photoelectrocatalytic Degradation of Tetrabromobisphenol A with Persulfate-enhanced ZnO@N, C-Co3O4

  • 摘要: 过硫酸盐活化技术作为一种新型高级氧化技术,与光电催化技术耦合后能够显著提高材料对污染物的降解性能. 通过水热法研制ZIF-67/8的衍生材料ZnO@N, C-Co3O4,显著拓宽ZnO的光吸收范围至可见光区域,并且有效抑制光生载流子的复合. 对复合薄膜电极的化学组成、形貌特征、光吸收性能进行表征,研究了光电化学性能. 研究表明:薄膜电极在过硫酸盐增强光电催化体系中对四溴双酚A(TBBPA)的降解率最高达97.2%. 过硫酸盐活化技术和光电催化耦合显著增强ZnO@N, C-Co3O4对TBBPA的催化降解效率. 提出了过硫酸盐增强光电催化降解TBBPA的机理,硫酸根自由基和羟基自由基是该体系的主要活性物种.
  • 图  1  ZnO@N,C-Co3O4薄膜电极的制备

    Figure  1.  The preparation of ZnO@N, C-Co3O4 film

    图  2  不同样品的XRD图谱

    Figure  2.  The XRD patterns of different samples

    图  3  不同样品的SEM图

    Figure  3.  The SEM images of different samples

    图  4  不同样品的TEM图

    Figure  4.  The TEM images of different samples

    图  5  ZnO@N, C-Co3O4的XPS能谱

    Figure  5.  The XPS spectra of ZnO@N, C-Co3O4

    图  6  不同样品的紫外-可见光吸收光谱及其Tauc图

    Figure  6.  The UV-Vis spectra and Tauc plot of different samples

    图  7  ZnO和ZnO@N, C-Co3O4的拉曼光谱及EPR谱

    Figure  7.  The Raman spectra and EPR spectra of ZnO and ZnO@N, C-Co3O4

    图  8  不同材料的光电化学性质

    Figure  8.  The photoelectrochemical properties of different materials

    图  9  不同扫描速率下ZnO@N, C-Co3O4的循环伏安特性

    Figure  9.  The CV characteristics of ZnO@N, C-Co3O4

    图  10  不同条件下的光(电)催化降解性能

    Figure  10.  The performance of photo(electro) catalytic degradation under different conditions

    图  11  在最优条件下不同催化剂的催化降解效率和不同降解工艺的比较

    Figure  11.  The degradation efficiency of different catalysts under optimal conditions and the comparison of different degradation processes

    图  12  在光电催化降解过程中不同自由基的降解效率和·OH和·SO4-的EPR谱

    Figure  12.  The degradation effictency of different radicals during the photoelectrocatalytic degradation and the EPR spectra of ·OH and ·SO4-

  • [1] ANTONIOU M G, CRUZ A A D L, DIONYSIOU D D. Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e transfer mechanisms[J]. Applied Catalysis B: Environmental, 2010, 96(3/4): 290-298. http://www.sciencedirect.com/science/article/pii/s092633731000069x
    [2] ZHAO Q X, MAO Q M, ZHOU Y Y, et al. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: a review on heterogeneous catalysts and applications[J]. Chemosphere, 2017, 189: 224-238. doi: 10.1016/j.chemosphere.2017.09.042
    [3] HORI H, NAGAOKA Y, MURAYAMA M, et al. Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water[J]. Environmental Science & Technology, 2008, 42(19): 7438-7843. http://europepmc.org/abstract/MED/18939583
    [4] YANG Q J, CHOI H, CHEN Y J, et al. Heterogeneous activation of peroxymonosulfate by supported cobalt catalysts for the degradation of 2, 4-dichlorophenol in water: the effect of support, cobalt precursor, and UV radiation[J]. Applied Catalysis B: Environmental, 2008, 77(3/4): 300-307. http://www.sciencedirect.com/science/article/pii/S092633730700224X
    [5] WANG J L, WANG S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059
    [6] HU P D, LONG M. Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications[J]. Applied Catalysis B: Environmental, 2016, 181: 103-117. doi: 10.1016/j.apcatb.2015.07.024
    [7] MENG X C, ZHANG Z S, LI X G. Synergetic photoelectrocatalytic reactors for environmental remediation: a review[J]. Journal of Photochemistry & Photobiology C: Photochemistry Reviews, 2015, 24: 83-101. http://smartsearch.nstl.gov.cn/paper_detail.html?id=885d3e890f951ffa7cdfc40838e586ad
    [8] DAGHRIR R, DROGUI P, ROBERT D. Photoelectrocatalytic technologies for environmental applications[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 238: 41-52. doi: 10.1016/j.jphotochem.2012.04.009
    [9] DONG L, XU T, CHEN W, et al. Synergistic multiple active species for the photocatalytic degradation of contaminants by imidazole-modified g-C3N4 coordination with iron phthalocyanine in the presence of peroxymonosulfate[J]. Chemical Engineering Journal, 2019, 357: 198-208. doi: 10.1016/j.cej.2018.09.094
    [10] ZHOU J B, LIU W, CAI W Q. The synergistic effect of Ag/AgCl@ZIF-8 modified g-C3N4 composite and peroxymonosulfate for the enhanced visible-light photocatalytic degradation of levofloxacin[J]. Science of the Total Environment, 2019, 696: 133962/1-13. http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMzAyEiA5NjlmNTEwYzk2NjRjNDU4YjM0MTYzMmY0Njc1NDdhYxoId3VtZHZ3OHI%3D
    [11] XIE Y B, LI X Z. Degradation of bisphenol A in aqueous solution by H2O2-assisted photoelectrocatalytic oxidation[J]. Journal of Hazardous Materials, 2006, 138(3): 526-533. doi: 10.1016/j.jhazmat.2006.05.074
    [12] ZHOU Q X, XING A, LI J, et al. Synergistic enhancement in photoelectrocatalytic degradation of bisphenol A by CeO2 and reduced graphene oxide co-modified TiO2 nanotube arrays in combination with Fenton oxidation[J]. Electrochimica Acta, 2016, 209: 379-388. doi: 10.1016/j.electacta.2016.05.094
    [13] BESSEGATO G G, CARDOSO J C, SILVA B F D, et al. Combination of photoelectrocatalysis and ozonation: a novel and powerful approach applied in Acid Yellow 1 mineralization[J]. Applied Catalysis B: Environmental, 2016, 180: 161-168. doi: 10.1016/j.apcatb.2015.06.013
    [14] WANG K Y, LIANG G Z, WAQAS M, et al. Peroxymonosulfate enhanced photoelectrocatalytic degradation of ofloxacin using an easily coated cathode[J]. Separation and Purification Technology, 2019, 236: 116301/1-9. http://www.sciencedirect.com/science/article/pii/S1383586619337360
    [15] BACHA A U R, NABI L, CHENG H Y, et al. Photoelectrocatalytic degradation of endocrine-disruptor bisphenol A with significantly activated peroxymonosulfate by Co-BiVO4 photoanode[J]. Chemical Engineering Journal, 2020, 389: 124482/1-8.
    [16] ZHANG M M, GONG Y, MA N. Promoted Photoelectrocatalytic degradation of BPA with peroxymonosulfate on a MnFe2O4 modified carbon paper cathode[J]. Chemical Engineering Journal, 2020, 399: 125088/1-11. http://www.sciencedirect.com/science/article/pii/S1385894720310809
    [17] LIU S S, ZHAO X, WANG Y B, et al. Peroxymonosulfate enhanced photoelectrocatalytic degradation of phenol activated by Co3O4 loaded carbon fiber cathode[J]. Journal of Catalysis, 2017, 355: 167-175. doi: 10.1016/j.jcat.2017.09.016
    [18] TANG Y M, ZHENG Z X, SUN X L, et al. Ternary CdS-MoS2 coated ZnO nanobrush photoelectrode for one-dimensional acceleration of charge separation upon visible light illumination[J]. Chemical Engineering Journal, 2019, 368: 448-458. doi: 10.1016/j.cej.2019.02.166
    [19] SHARMA P K, SINGH V V, PANDEY L K, et al. Photoelectrocatalytic degradation of vesicant agent using Eu/ZnO/PPy nanocomposite[J]. Environmental Pollution, 2019, 246: 491-500. doi: 10.1016/j.envpol.2018.12.036
    [20] 宋昆朋, 王银杰, 方祝青, 等. ZIF-67/聚磷腈复合微球的可控制备及表征[J]. 中国塑料, 2021, 35(1): 1-7.

    SONG K P, WANG Y J, FANG Z Q, et al. Controlled preparation and characterization of ZIF-67/polyphosphonitrile composite microspheres[J]. China Plastic, 2021, 35(1): 1-7.
    [21] 程远, 李志达, 吴红军. 沸石咪唑酯类骨架材料及其衍生碳材料的制备及性能表征[J]. 化工新型材料, 2021, 49(1): 90-94;98.

    CHENG Y, LI Z D, WU H J. Preparation and characterization of zeolite imidazole-ester framework materials and their derived carbon materials[J]. New Chemical Materials, 201, 49(1): 90-94;98.
    [22] 庄晓利, 韩超, 张晨, 等. 基于ZIF-67的Co3O4/C修饰电极制备及对多巴胺传感性能研究[J/OL]. 分析试验室, 2021, 40(3): 265-269.

    ZHUANG X L, HAN C, ZHANG C, et al. Preparation of Co3O4/C Modified Electrode Based on ZIF-67 and Its Sensing Performance for Dopamine[J/OL]. Analysis Laboratory, 2021, 40(3): 265-269.
    [23] CHEN Y, WANG L, GAO R J, et al. Polarization-Enhanced direct Z-scheme ZnO-WO3-x nanorod arrays for efficient piezoelectric-photoelectrochemical water Splitting[J]. Applied Catalysis B: Environmental, 2019, 259: 118079/1-9. http://www.sciencedirect.com/science/article/pii/S0926337319308264
    [24] LIU X J, PAN L K, ZHAO Q F, et al. UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(Ⅵ)[J]. Chemical Engineering Journal, 2012, 183: 238-243. doi: 10.1016/j.cej.2011.12.068
    [25] YAO M S, TANG W X, WANG G E, et al. MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance[J]. Advanced Materials, 2016, 28: 5229-5234. doi: 10.1002/adma.201506457
    [26] JIA G R, LIU L L, ZHANG L, et al. 1D alignment of ZnO@ZIF-8/67 nanorod arrays for visible-light-driven photoelectrochemical water splitting[J]. Applied Surface Science, 2018, 448: 254-260. doi: 10.1016/j.apsusc.2018.04.102
    [27] XIAO H, LIU S T, SHI L L, et al. ZIF-derived wrinkled Co3O4 polyhedra supported on 3D macroporous carbon sponge for supercapacitor electrode[J]. Ceramics International, 2019, 45: 14634-14641. doi: 10.1016/j.ceramint.2019.04.182
    [28] BAI Y R, DONG J P, HOU Y Q, et al. Co3O4@PC derived from ZIF-67 as an efficient catalyst for the selective catalytic reduction of NO with NH3 at low temperature[J]. Chemical Engineering Journal, 2018, 361: 703-712. http://www.sciencedirect.com/science/article/pii/S138589471832597X
    [29] LI Y Y, LI K, LUO Y Y, et al. Synthesis of Co3O4/ZnO nano-heterojunctions by one-off processing ZIF-8@ZIF-67 and their gas-sensing performances for trimethylamine[J]. Sensors and Actuators B: Chemical, 2020, 308: 127657/1-9.
    [30] HUANG S L, HE B, YAN X L, et al. Hierarchical ZnO/Si nanowire arrays as an effective substrate for surface-enhanced Raman scattering application[J]. Sensors and Actuators B: Chemical, 2018, 273: 48-55. doi: 10.1016/j.snb.2018.06.003
    [31] WANG C, LUO S Y, LIU C Y, et al. Photocatalytic Performance of single crystal ZnO nanorods and ZnO nanorods films under natural sunlight[J]. Inorganic Chemistry Communications, 2020, 114: 107842/1-7. http://www.sciencedirect.com/science/article/pii/S1387700320300769
    [32] LORITE I, ROMERO J J, FEMANDEZ J F. Effects of the agglomeration state on the Raman properties of Co3O4 nanoparticles[J]. Journal of Raman Spectroscopy, 2012, 43(10): 1443-1448. doi: 10.1002/jrs.4098
    [33] LIANG Y T, VIJAYAN B K, GRAY K A, et al. Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production[J]. Nano Letters, 2011, 11(7): 2865-2870. doi: 10.1021/nl2012906
    [34] ZHOU J, ZHOU A W, SHU L, et al. Cellular heterojunctions fabricated through the sulfurization of MOFs onto ZnO for high-efficient photoelectrochemical water oxidation[J]. Applied Catalysis B: Environmental, 2018, 226: 421-428. doi: 10.1016/j.apcatb.2017.12.065
    [35] REDA G M, FAN H Q, TIAN H L. Room-temperature solid state synthesis of Co3O4/ZnO p-n heterostructure and its photocatalytic activity[J]. Advanced Powder Technology, 2017, 28: 953-963. doi: 10.1016/j.apt.2016.12.025
    [36] GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review[J]. Chemical Engineering Journal, 2016, 310: 307-315.
  • 加载中
图(12)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  11
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-23
  • 网络出版日期:  2021-07-06
  • 刊出日期:  2021-06-25

目录

    /

    返回文章
    返回