Chemical Fixation of CO2 Catalyzed by Functionalized Graphene Oxide
-
摘要: 通过一锅法将氨基官能化的咪唑离子液体嫁接在氧化石墨烯(GO)和硅铝酸盐中孔分子筛(SBA-15)上,用来催化合成环状碳酸酯. 通过傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、热重分析(TGA)和元素分析(EA)对催化剂的结构、热稳定性以及氨基官能化咪唑离子液体的嫁接量进行了研究. 在环加成反应过程中,GO-NH2的活性高于SBA-15-NH2. 最佳条件: 催化剂用量0.15 g、反应温度130 ℃、CO2压力1.5 MPa和反应时间5 h,碳酸丙烯酯的产率达到96.46%. 此外,催化剂具有可回收性并可以连续5次重复使用.Abstract: The amino-functionalized imidazole ionic liquid (IL) was supported on graphene oxide (GO) and Santa Barbara Amorphous mesoporous molecular sieves (SBA-15) through the facile and simplified one-pot grafting approach to catalyze the synthesis of cyclic carbonates. The structure and thermal stability of the catalyst and the loading of the amino-functionalized imidazole IL were studied in detail with Fourier transforn infrared spectroscopy(FT-IR), scanning electron microscope(SEM), thermogravimetric analysis(TGA) and elemental analysis(EA). During the cycloaddition reaction, GO-NH2 exhibited higher activity than SBA-15-NH2. The optimum condition was 0.15 g catalyst, 130 ℃, 1.5 MPa CO2 pressure and 5 h of reaction time, and the yield of propylene carbonate reached 96.46%. Furthermore, the supported catalyst exhibited promising recyclability and reusability for five consecutive reuses.
-
Key words:
- cyclic carbonates /
- graphene oxide /
- ionic liquid /
- heterogeneous catalysis /
- epoxide /
- SBA-15
-
表 1 各种样品的元素分析结果
Table 1. The elemental analysis results of various samples
编号 样品 w(C)/% w(N)/% 嫁接量/(mmol·g-1) 嫁接率/% 1 GO 48.42 — — — 2 GO-NH2 26.04 7.24 1.730 46.78 3 GO-NH2(循环5次后) 28.63 7.23 1.720 46.77 4 SBA-15 — — — — 5 SBA-15-NH2 12.05 8.29 1.975 53.42 6 SBA-15-NH2(循环5次后) 12.01 8.27 1.974 53.41 表 2 各种催化剂对CO2环加成生成PC的性能
Table 2. The performance of various catalysts for the cycloaddition of CO2 to form PC
实验序号 催化剂 PC产率/% PC选择性/% 1 无 痕量 — 2 N-methylimidazole < 3 100 3 2-Bromoethylamine 19.06 98 4 GO 15.05 98 5 GO-NH2 96.46 99 6 SBA-15 8.51 98 7 SBA-15-NH2 90.47 99 注:PO为34.5 mmol,催化剂质量为0.15 g,压力为1.5 MPa,温度为130 ℃,反应时间为5 h. 表 3 GO-NH2与各种同类催化剂的催化活性比较
Table 3. The performance of various catalysts for CO2 and PO cycloaddition reaction
-
[1] RASHIDI N A, YUSUP S. An overview of activated carbons utilization for the post-combustion carbon dioxide capture[J]. Journal of CO2 Utilization, 2016, 13: 1-16. doi: 10.1016/j.jcou.2015.11.002 [2] BHANIA P, MODAK A, BHAUMIK A. Porous organic polymers for CO2 storage and conversion reactions[J]. ChemCatChem, 2019, 11(1): 244-257. doi: 10.1002/cctc.201801046 [3] KAMPHUIS A J, PICCHIONI F, PESCARMONA P P. CO2-fixation into cyclic and polymeric carbonates: principles and applications[J]. Green Chemistry, 2019, 21: 406-448. doi: 10.1039/C8GC03086C [4] LU X B, DARENSBOURG D J. Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates[J]. Chemical Society Reviews, 2012, 41: 1462-1484. doi: 10.1039/C1CS15142H [5] SRIVASTAVA R, D SRINIVAS, RATNASAMY P. Sites for CO2 activation over amine-functionalized mesoporous Ti(Al)-SBA-15 catalysts[J]. Microporous & Mesoporous Materials, 2006, 90: 314-326. http://www.sciencedirect.com/science/article/pii/S1387181105005421 [6] ZHANG X, NING Z, WEI W, et al. Chemical fixation of carbon dioxide to propylene carbonate over amine-functionalized silica catalysts[J]. Catalysis Today, 2006, 115: 102-106. doi: 10.1016/j.cattod.2006.02.028 [7] JAGTAP S R, RAJE V P, SAMANT S D, et al. Silica supported polyvinyl pyridine as a highly active heterogeneous base catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides[J]. Journal of Molecular Catalysis A Chemical, 2007, 266: 69-74. doi: 10.1016/j.molcata.2006.10.033 [8] DAI W L, JIN B, LUO S L, et al. Novel functionalized guanidinium ionic liquids: efficient acid-base bifunctional catalysts for CO2 fixation with epoxides[J]. Journal of Molecular Catalysis A Chemical, 2013, 378: 326-332. doi: 10.1016/j.molcata.2013.06.024 [9] YU G R, ZHANG S J, ZHOU G H, et al. Structure, interaction and property of amino-functionalized imidazolium ILs by molecular dynamics simulation and ab initio calculation[J]. AICHE Journal, 2010, 53(12): 3210-3221. doi: 10.1002/aic.11339 [10] BATES E D, MAYTON R D, NTAI I, et al. CO2 capture by a task-specific ionic liquid[J]. Journal of the American Chemical Society, 2002, 124(6): 926-927. doi: 10.1021/ja017593d [11] CHEN J J, LI W W, LI X L, et al. Carbon dioxide capture by aminoalkyl imidazolium-based ionic liquid: a computational investigation[J]. Physical Chemistry Chemical Physics, 2012, 14(13): 4589-4596. doi: 10.1039/c2cp23642g [12] GUTOWSKI K E, MAGINN E J. Amine-functionalized task-specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation[J]. Journal of the American Chemical Society, 2008, 130(44): 14690-14704. doi: 10.1021/ja804654b [13] YU G R, ZHANG S J, YAO X Q, et al. Design of task-specific ionic liquids for capturing CO2: a molecular orbital study[J]. Industrial & Engineering Chemistry Research, 2006, 45(8): 2875-2880. doi: 10.1021/ie050975y [14] YUE C, SU D, ZHANG X, et al. Amino-functional imidazolium ionic liquids for CO2 activation and conversion to form cyclic carbonate[J]. Catalysis Letters, 2014, 144(7): 1313-1321. doi: 10.1007/s10562-014-1241-5 [15] YUE S, WANG P, HAO X, et al. Dual amino-functionalized ionic liquids as efficient catalysts for carbonate synthesis from carbon dioxide and epoxide under solvent and cocatalyst-free conditions[J]. Journal of CO2 Utilization, 2017, 21: 238-246. doi: 10.1016/j.jcou.2017.07.017 [16] 张灿鹏, 邵志刚. CO2和CO分子在五边形石墨烯表面的吸附行为[J]. 华南师范大学学报(自然科学版), 2019, 51(1): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201901003.htmZHANG C P, SHAO Z G. The adsorption behavior of CO2 and coonpenta-Graphere[J]. Journl of South China Normal University (Natural Science Edition), 2019, 51(1): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201901003.htm [17] ZHANG M, CHU B, LI G Y, et al. Triethanolamine-modified mesoporous SBA-15: facile one-pot synthesis and its catalytic application for cycloaddition of CO2 with epoxides under mild conditions[J]. Microporous & Mesoporous Materials, 2019, 274: 363-372. http://d.wanfangdata.com.cn/periodical/92a931c8b57c44e1e723a8274e823153 [18] APPATURI N J, JOHAN M F, RAMALINGAM R J, et al. Highly efficient green mesostructured urea functionalized on SBA-15 catalysts for selective synthesis of benzlidenemalononitrile[J]. Microporous and Mesoporous Materials, 2018, 256: 67-74. doi: 10.1016/j.micromeso.2017.07.055 [19] ZHANG S Q, LEE Y R, JEON H J, et al. Pd nanoparticles on a microporous covalent triazine polymer for H2 production via formic acid decomposition[J]. Materials Letters, 2018, 215: 211-213. doi: 10.1016/j.matlet.2017.12.106 [20] GUO L Y, DENG L L, JIN X C, et al. Composite ionic liquids immobilized on MCM-22 as efficient catalysts for the cycloaddition reaction with CO2 and propylene oxide[J]. Catalysis Letters, 2017, 147: 2290-2297. doi: 10.1007/s10562-017-2137-y [21] LIU M, GAO K, LIANG L, et al. Insights into hydrogen bond donor promoted fixation of carbon dioxide with epoxides catalyzed by ionic liquids[J]. Physical Chemistry Chemical Physics, 2015, 17(8): 5959-5965. doi: 10.1039/C4CP05464D [22] LUO R, ZHOU X, FANG Y, et al. Metal- and solvent-free synthesis of cyclic carbonates from epoxides and CO2 in the presence of graphite oxide and ionic liquid under mild conditions: a kinetic study[J]. Carbon, 2015, 82: 1-11. doi: 10.1016/j.carbon.2014.10.004 [23] JIAN S, CHENG W, WEI F, et al. Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2[J]. Catalysis Today, 2009, 148: 361-367. doi: 10.1016/j.cattod.2009.07.070 [24] ZHU J, GU Y K, WU J, et al. Aqueous grafting ionic liquid on graphene oxide for CO2 cycloaddition[J]. Catalysis Letters, 2017, 147: 335-344. doi: 10.1007/s10562-016-1941-0 [25] SUBHAN S, RAHMAN A U, YASEEN M, et al. Ultra-fast and highly efficient catalytic oxidative desulfurization of dibenzothiophene at ambient temperature over low Mn loaded Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts using NaClO as oxidant[J]. Fuel, 2019, 237: 793-805. doi: 10.1016/j.fuel.2018.10.067 [26] SUBHAN S, MUHAMMAD Y, SAHIBZADA M, et al. Studies on the selection of a catalyst oxidant system for the energy-efficient desulfurization and denitrogenation of fuel oil at mild operating conditions[J]. Energy and Fuels, 2019, 33(9): 8423-8439. doi: 10.1021/acs.energyfuels.9b01950 [27] DAI W, ZHANG Y, TAN Y, et al. Reusable and efficient polymer nanoparticles grafted with hydroxyl-functionalized phosphonium-based ionic liquid catalyst for cycloaddition of CO2 with epoxides[J]. Applied Catalysis A: General, 2016, 514: 43-50. doi: 10.1016/j.apcata.2016.01.004 [28] QI C, YE J, WEI Z, et al. Polystyrene-supported amino acids as efficient catalyst for chemical fixation of carbon dioxide[J]. ChemInform, 2010, 352: 1925-1933. doi: 10.1002/adsc.201000261 [29] XIAO L, DAN S, YUE C, et al. Protic ionic liquids: a highly efficient catalyst for synthesis of cyclic carbonate from carbon dioxide and epoxides[J]. Journal of CO2 Utilization, 2014, 6: 1-6. doi: 10.1016/j.jcou.2014.01.004 [30] KIM M I, KIM D K, BINEESH K V, et al. Catalytic performance of montmorillonite clay ion-exchanged with ionic liquids in the cycloaddition of carbon dioxide to allyl glycidyl ether[J]. Catalysis Today, 2013, 200: 24-29. doi: 10.1016/j.cattod.2012.04.049 [31] SHI T Y, WANG J Q, SUN J, et al. Efficient fixation of CO2 into cyclic carbonates catalyzed by hydroxyl-functionalized poly(ionic liquids)[J]. RSC Advances, 2013, 3(11): 3726-3732. doi: 10.1039/c3ra21872d [32] YU Y I, CHOI H J, SELVARAJ M, et al. Catalytic performance of polymer-supported ionic liquids in the cycloaddition of carbon dioxide to allyl glycidyl ether[J]. Reaction Kinetics, Mechanisms and Catalysis, 2011, 102(2): 353-365. doi: 10.1007/s11144-010-0280-1 [33] MUHAMMAD Y, Ur RAHMAN A, Ur RASHID H, et al. Hydrodesulfurization of dibenzothiophene using Pd-promoted Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts coupled with ionic liquids at ambient operating conditions[J]. RSC Advances, 2019, 9: 10371-10385. doi: 10.1039/C9RA00095J -