留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米TiO2溶胶催化葡萄糖合成5-羟甲基糠醛

陈烨婷 左雄军 顾凤龙

陈烨婷, 左雄军, 顾凤龙. 纳米TiO2溶胶催化葡萄糖合成5-羟甲基糠醛[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 29-34. doi: 10.6054/j.jscnun.2021040
引用本文: 陈烨婷, 左雄军, 顾凤龙. 纳米TiO2溶胶催化葡萄糖合成5-羟甲基糠醛[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 29-34. doi: 10.6054/j.jscnun.2021040
CHEN Yeting, ZUO Xiongjun, GU Fenglong. The Catalytic Formation of 5-Hydroxymethyl Furfuraldehyde from Glucose with Nano-TiO2 Gel[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(3): 29-34. doi: 10.6054/j.jscnun.2021040
Citation: CHEN Yeting, ZUO Xiongjun, GU Fenglong. The Catalytic Formation of 5-Hydroxymethyl Furfuraldehyde from Glucose with Nano-TiO2 Gel[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(3): 29-34. doi: 10.6054/j.jscnun.2021040

纳米TiO2溶胶催化葡萄糖合成5-羟甲基糠醛

doi: 10.6054/j.jscnun.2021040
基金项目: 

国家自然科学基金项目 21673085

粤港科技合作资助计划项目 2017A050506048

详细信息
    通讯作者:

    顾凤龙,Email: gu@scnu.edu.cn

  • 中图分类号: O643

The Catalytic Formation of 5-Hydroxymethyl Furfuraldehyde from Glucose with Nano-TiO2 Gel

  • 摘要: 采用溶胶凝胶法合成了纳米TiO2溶胶和PEG-TiO2溶胶,将其作为葡萄糖转化为5-羟甲基糠醛(HMF)的催化剂,对比研究了纳米TiO2粉体和TiO2溶胶的催化性能. 结果表明: 以纳米TiO2溶胶为催化剂,葡萄糖转化为HMF的转化率为93.7%,HMF的收率为21.7%;以纳米TiO2为催化剂,葡萄糖的转化率接近100%,而HMF的收率仅为1.4%. 采用聚乙二醇(PEG 200)和钛酸乙酯为原料,制备了具有更高TiO2固含量的PEG-TiO2溶胶,方便运输、储存和使用. 在最佳条件下,以PEG-TiO2溶胶和甲酸为催化剂,以水为反应溶剂,葡萄糖的转化率达到92.0%,HMF的收率达到56.2%,反应温度为100 ℃,反应时间为12 h. 研究结果为工业上大规模绿色高效催化葡萄糖转化为HMF提供了一种新的方法.
  • 图  1  不同催化剂的TEM、SEM图

    Figure  1.  The TEM and SEM images of different catalysts

    图  2  不同催化剂的XRD图谱

    注:a为干燥的PEG-TiO2溶胶,b为600 ℃下烧结得到的PEG-TiO2溶胶,c为700 ℃下烧结得到的PEG-TiO2溶胶,d为800 ℃下烧结得到的PEG-TiO2溶胶.

    Figure  2.  The XRD pattern of different catalysts

    图  3  纳米TiO2溶胶和粉体的催化效果

    注:A采用100 mL纳米TiO2溶胶和0.5 g葡萄糖,在79 ℃下反应; B采用100 mL水和2 g葡萄糖,在100 ℃下反应.

    Figure  3.  The catalytic effects of nano TiO2 gel and powders

    图  4  催化剂体积对收率和转化率的影响

    注:以PEG-TiO2溶胶为催化剂,加水至反应液总体积为100 mL,葡萄糖为0.5 g,温度为100 ℃,反应时间为6 h.

    Figure  4.  The effect of catalyst volume on the yield and the conversion rate

    图  5  甲酸体积和反应时间对收率和转化率的影响

    注:反应液总体积为100 mL,葡萄糖为2 g,温度为100 ℃.

    Figure  5.  The effects of the volume of formic acid and reaction time on the the yield and the conversion rate

    图  6  催化剂的循环使用次数对收率和转化率的影响

    注:采用30 mL水、30 mL PEG-TiO2溶胶、40 mL甲酸、2 g葡萄糖,在100 ℃下反应6 h.

    Figure  6.  The influence of catalyst cycle times on the yield and the conversion rate

    表  1  催化剂的平均粒径

    Table  1.   The average particle size of catalysts

    样品 平均粒径/nm PdI
    纳米TiO2溶胶a 52 0.184
    纳米TiO2溶胶b 352 0.303
    PEG-TiO2溶胶c 1 510 1.000
    PEG-TiO2溶胶d 1 580 1.000
    注:a为新制的纳米TiO2溶胶; b为放置2 d后的纳米TiO2溶胶;c为新制的PEG-TiO2溶胶; d为放置2 d后的PEG-TiO2溶胶.
    下载: 导出CSV
  • [1] ROSATELLA A A, SIMEONOV S P, FRADEA R F M, et al. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications[J]. Green Chemistry, 2011, 4(13): 754-793. doi: 10.1002/chin.201132258/full
    [2] CAI C M, ZHANG T, KUMAR R, et al. Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass[J]. Journal of Chemical Techno-logy and Biotechnology, 2014, 89(1): 2-10. doi: 10.1002/jctb.4168
    [3] ZHANG Y L, LI B, GUAN W, et al. One-pot synthesis of HMF from carbohydrates over acid-base bi-functional carbonaceous catalyst supported on halloysite nanotubes[J]. Cellulose, 2020, 27(2): 3037-3054. doi: 10.1007/s10570-020-02994-1
    [4] KUSTER B F M. 5-Hydroxymethylfurfural (HMF): a review focussing on its manufacture[J]. Starch, 1990, 42(8): 314-321. doi: 10.1002/star.19900420808
    [5] ATANDA L, KONAROVA M, MA Q, et al. High yield conversion of cellulosic biomass into 5-hydroxymethylfurfural and a study of the reaction kinetics of cellulose to HMF conversion in a biphasic system[J]. Catalysis Science & Technollogy, 2016, 6(9): 6257-6266. http://smartsearch.nstl.gov.cn/paper_detail.html?id=76f3db662b290d953140c5b67a4c38e8
    [6] HANSEN T S, WOODLEY J M, RⅡSAGER A, et al. Efficient microwave-assisted synthesis of 5-hydroxymethylfurfural from concentrated aqueous fructose[J]. Carbohydrate Research, 2009, 34(4): 2568-2572. http://www.cabdirect.org/abstracts/20093354102.html
    [7] LANZIANO C A S, MOYA S F, BARRETT D H, et al. Hybrid-organic-inorganic anatase as a bifunctional catalyst for enhanced production of HMF from glucose in water[J]. ChemSusChem, 2018, 8(6): 110-111. http://www.ncbi.nlm.nih.gov/pubmed/29316333
    [8] ZHANG Z, LIU B, ZHAO Z. Conversion of fructose into HMF catalyzed by GeCl4, in DMSO and[Bmim]Cl system at room temperature[J]. Carbohydrate Polymers, 2012, 88(3): 891-895. doi: 10.1016/j.carbpol.2012.01.032
    [9] ROMÁN-LESHKOV Y, CHHEDA J N, DUMESIC J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science, 2006, 312: 1933-1937. doi: 10.1126/science.1126337
    [10] ZHAO H, HOLLADAY J E, BROWN H, et al. Metal chlorides in ionic liquid gelvents convert sugars to 5-Hydroxymethylfurfural[J]. Science, 2007, 316: 1597-1600. doi: 10.1126/science.1141199
    [11] HU S Q, ZHANG Z F, ZHOU Y X, et al. Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids[J]. Green Chemistry, 2009, 5(11): 873-877. http://www.ingentaconnect.com/content/rsoc/14639262/2009/00000011/00000006/art00027
    [12] QI X H, WATANABE M, AIDA T M, et al. Efficient catalytic conversion of fructose into 5-Hydroxymethylfurfural in ionic liquids at room temperature[J]. ChemSusChem, 2009, 2(7): 944-946. http://www.ncbi.nlm.nih.gov/pubmed/?term=19790220[uid]
    [13] NOMA R, NAKAJIMA K, KAMATA K, et al. Formation of 5-(Hydroxymethyl) furfural by stepwise dehydration over TiO2 with water-tolerant Lewis Acid sites[J]. Journal of Physical Chemistry C, 2015, 119(30): 17117-17125. doi: 10.1021/acs.jpcc.5b03290
    [14] TUERCKE T, PANIC S, LOEBBECKE S, et al. Microreactor process for the optimized synthesis of 5-Hydroxymethylfurfural: a promising building block obtained by catalytic dehydration of fructose[J]. Chemical Engineering & Technology, 2009, 32(2): 1815-1822. http://www.researchgate.net/publication/230455178_Microreactor_Process_for_the_Optimized_Synthesis_of_5-Hydroxymethylfurfural_A_Promising_Building_Block_Obtained_by_Catalytic_Dehydration_of_Fructose
    [15] YAO K, TANG C. Controlled polymerization of next-generation renewable monomers and beyond[J]. Macromolecules, 2013, 46(5): 1689-1712. doi: 10.1021/ma3019574
    [16] 郑品棋, 熊予莹, 黄志安, 等. 化学沉淀法和溶胶-凝胶法制备纳米二氧化钛及其抑菌性的研究[J]. 华南师范大学学报(自然科学版), 2006(3): 65-69. doi: 10.3969/j.issn.1000-5463.2006.03.012

    ZHENG P Q, XIONG Y Y, HUANG Z A, et al. Study on TiO2 nanoparticle prepared by chemistry precipitation method and sol-gel method and its antibacterial property[J]. Journal of South China Normal University(Natural Science Editioin), 2006(3): 65-69. doi: 10.3969/j.issn.1000-5463.2006.03.012
    [17] 伊洪坤, 卢平. 壳聚糖改性TiO2光催化剂的制备及其光催化性能研究[J]. 华南师范大学学报(自然科学版), 2009(2): 70-74. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF200902019.htm

    YI H K, LU P. The preparation of CTS modified TiO2 and its photocatalytic activity[J]. Journal of South China Normal University(Natural Science Edition), 2009(2): 70-74. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF200902019.htm
    [18] 杨挺. 高效液相色谱分析葡萄糖和山梨醇的研究[J]. 华南师范大学学报(自然科学版), 2000(3): 49-51. doi: 10.3969/j.issn.1000-5463.2000.03.012

    YANG T. Study on analysing glucose and sorbitol by high performance liquid chromatography[J]. Journal of South China Normal University(Natural Science Edition), 2000(3): 49-51. doi: 10.3969/j.issn.1000-5463.2000.03.012
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  4
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-10
  • 刊出日期:  2021-06-25

目录

    /

    返回文章
    返回