留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe(Ⅲ)掺杂对W18O49超细纳米线结构和气敏性能的影响

杜帅航 岳鹿 关荣锋 杨秀丽 许宁 张文惠

杜帅航, 岳鹿, 关荣锋, 杨秀丽, 许宁, 张文惠. Fe(Ⅲ)掺杂对W18O49超细纳米线结构和气敏性能的影响[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 22-28. doi: 10.6054/j.jscnun.2021039
引用本文: 杜帅航, 岳鹿, 关荣锋, 杨秀丽, 许宁, 张文惠. Fe(Ⅲ)掺杂对W18O49超细纳米线结构和气敏性能的影响[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 22-28. doi: 10.6054/j.jscnun.2021039
DU Shuaihang, YUE Lu, GUAN Rongfeng, YANG Xiuli, XU Ning, ZHANG Wenhui. The Effect of Fe(Ⅲ) Doping on Structure and Gas Sensing Properties of Ultrathin W18O49 Nanowires[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(3): 22-28. doi: 10.6054/j.jscnun.2021039
Citation: DU Shuaihang, YUE Lu, GUAN Rongfeng, YANG Xiuli, XU Ning, ZHANG Wenhui. The Effect of Fe(Ⅲ) Doping on Structure and Gas Sensing Properties of Ultrathin W18O49 Nanowires[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(3): 22-28. doi: 10.6054/j.jscnun.2021039

Fe(Ⅲ)掺杂对W18O49超细纳米线结构和气敏性能的影响

doi: 10.6054/j.jscnun.2021039
基金项目: 

国家重点研发计划项目 2017YFC0703202

国家自然科学基金项目 51802276

详细信息
    通讯作者:

    许宁,Email: xuning196402@163.com

    张文惠,Email: zwhuizi000@sina.com

  • 中图分类号: O643.36

The Effect of Fe(Ⅲ) Doping on Structure and Gas Sensing Properties of Ultrathin W18O49 Nanowires

  • 摘要: 针对纯氧化钨纳米材料丙酮传感器存在灵敏度低、选择性差、检测温度高等问题,通过简单的溶剂热法制备Fe掺杂氧化钨(Fe-W18O49)超细纳米线,优化氧化钨材料对丙酮的敏感性能. 结果表明:Fe(Ⅲ)的掺杂不仅抑制了W18O49晶相向WO3晶相的转化,起到了稳定W18O49晶相的作用,而且优化了其气敏性能. 当掺杂比n(Fe)/n(W)为0.10时,其气敏性能最佳. 该材料在最佳工作温度(220 ℃)下对丙酮(体积分数为5×10-5)的灵敏度达11.4,响应/恢复时间为14/16 s,并且对丙酮有很好的选择性.
  • 图  1  氧化钨的SEM图

    Figure  1.  The SEM images of tungsten oxide

    图  2  Fe(Ⅲ)掺杂氧化钨的EDS能谱

    注:n(Fe)/n(W)=0.10.

    Figure  2.  The EDS spectrum of Fe(Ⅲ)-doped tungsten oxide

    图  3  不同Fe-W18O49样品的XRD图谱

    注:曲线a~e分别为n(Fe)/n(W)=0、0.05、0.10、0.15、0.20条件下制备的Fe-W18O49样品.

    Figure  3.  The XRD pattern of different Fe-W18O49 samples

    图  4  Fe-W18O49的TEM与SEM图

    注:n(Fe)/n(W)=0.10.

    Figure  4.  The TEM and SEM images of Fe-W18O49

    图  5  Fe-W18O49的XPS谱

    注:n(Fe)/n(W)=0.10.

    Figure  5.  The XPS spectra of Fe-W18O49

    图  6  Fe-W18O49的生长机理图

    Figure  6.  The growth mechanism of Fe-W18O49

    图  7  不同工作温度下气敏材料对丙酮的灵敏度

    注: 丙酮的体积分数为5×10-5.

    Figure  7.  The sensitivity of the gas sensing materials to acetone at different working temperatures

    图  8  气敏材料对不同体积分数丙酮的灵敏度曲线

    Figure  8.  The sensitivity of the gas sensing materials to acetone of different volume fractions

    图  9  气敏材料的灵敏度和选择性

    Figure  9.  The sensitivity and selectivity of gas sensing materials

    图  10  气敏材料的动态循环性能及稳定性

    Figure  10.  The dynamic cycling performance and stability of gas sensing materials

    表  1  EDS分析不同样品中O、W和Fe的物质的量分数

    Table  1.   The mole fraction of O, W and Fe in different samples under EDS analysis

    n(Fe)/n(W) x(O)/% x(W)/% x(Fe)/%
    0.05 74.78 24.71 0.51
    0.10 74.57 24.57 0.87
    0.15 74.51 24.51 0.97
    0.20 73.91 23.91 2.17
    下载: 导出CSV
  • [1] GE Y L, FU K X, ZHAO Q, et al. Performance study of modified Pt catalysts for the complete oxidation of acetone[J]. Chemical Engineering Science, 2019, 206: 499-506. doi: 10.1016/j.ces.2019.05.051
    [2] SUN Y, XU J Q, WANG X H, et al. The fabrication and triethylamine sensing performance of In-MIL-68 derived In2O3 with porous lacunaris structure[J]. Sensors and Actuators B: Chemical, 2020, 326: 128791/1-11. http://www.sciencedirect.com/science/article/pii/S0925400520311382
    [3] 杜帅航, 王开松, 张文惠, 等. 基于In2O3的高灵敏度乙醇气体传感器[J]. 微纳电子技术, 2020, 57(11): 894-898. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ202011006.htm

    DU S H, WANG K S, ZHANG W H, et al. High sensitivity ethanol gas sensor based on In2O3[J]. Micro Electronics and Nano Technologies Technology, 2020, 57(11): 894-898. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ202011006.htm
    [4] LUO N, ZHANG B, XU J Q, et al. Enhanced CO sensing properties of Pd modified ZnO porous nanosheets[J]. Chinese Chemical Letters, 2020, 31: 2033-2036. doi: 10.1016/j.cclet.2020.01.002
    [5] JEON I S, BAE G, JANG M, et al. Atomic-level mediation in structural interparameter tradeoff of zinc oxide nano-wires-based gas sensors: ZnO nanofilm/ZnO nanowire homojunction array[J]. Applied Surface Science, 2020, 540: 148350/1-7. http://www.sciencedirect.com/science/article/pii/S016943322033107X
    [6] LI Y X, LUO N, XU J Q, et al. Rational design and in situ growth of SnO2/CMF composites: insightful understanding of the formaldehyde gas sensing mechanism and enhanced gas sensing properties[J]. Journal of Materials Chemistry C, 2020, 8: 12418-12426. http://pubs.rsc.org/en/content/articlelanding/2020/tc/d0tc01650k
    [7] DAS S, GIRIJA K G, DEBNATH A K, et al. Enhanced NO2 and SO2 sensor response under ambient conditions by polyol synthesized Ni doped SnO2 nanoparticles[J]. Journal of Alloys and Compounds, 2020, 854: 157276/1-10. http://www.sciencedirect.com/science/article/pii/S0925838820336409
    [8] 刘咏梅, 张思凡, 刘敏, 等. MgO掺杂SnO2甲醛传感器的气敏性能[J]. 华南师范大学学报(自然科学版), 2020, 52(3): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202003008.htm

    LIU Y M, ZHANG S F, LIU M, et al. Gas sensitive performance of MgO doped SnO2 formaldehyde sensor[J]. Journal of South China Normal University(Natural Science Edition), 2020, 52(3): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202003008.htm
    [9] ZHANG G N, LENG D Y, ZHANG L G, et al. Porosity and oxygen vacancy engineering of mesoporous WO3 nanofibers for fast and sensitive low-temperature NO2 sensing[J]. Journal of Alloys and Compounds, 2020, 853: 157339/1-14. http://www.sciencedirect.com/science/article/pii/S0925838820337038
    [10] LEE J, KOO H, KIM S Y, et al. Electrostatic spray deposition of chemochromic WO3-Pd sensor for hydrogen leakage detection at room temperature[J]. Sensors and Actuators B: Chemical, 2020, 327: 128930/1-8. http://www.sciencedirect.com/science/article/pii/S0925400520312776
    [11] 赵林艳, 席晓丽, 樊佑书, 等. 纳米氧化钨的水热/溶剂热法制备及应用的综述[J]. 材料导报, 2019, 33(19): 3203-3209. doi: 10.11896/cldb.18060143

    ZHAO L Y, XI X L, FAN Y S, et al. Synthesis and application of nano-tungsten oxide by hydrothermal/solvothermal method[J]. Material Review, 2019, 33(19): 3203-3209. doi: 10.11896/cldb.18060143
    [12] HE K, ZHAO J, CHU X F, et al. Fast response-recovery time toward acetone by a sensor prepared with Pd doped WO3 nanosheets[J]. Royal Society of Chemistry, 2019, 9: 28439-28450. http://pubs.rsc.org/en/content/articlehtml/2019/ra/c9ra04429a
    [13] 白玉, 雷云裕, 刘文慧, 等. W18O49的制备、性能和应用研究进展[J]. 化工新型材料, 2018, 46(7): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201807013.htm

    BAI Y, LIU Y Y, LIU W H, et al. Research progress in preparation and application of W18O49[J]. New Chemical Materials, 2018, 46(7): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201807013.htm
    [14] 施梅勤, 佟雪, 方军, 等. Mo掺杂W18O49复合材料作为氧还原催化剂载体的研究[J]. 浙江工业大学学报, 2018, 46(3): 262-269. doi: 10.3969/j.issn.1006-4303.2018.03.005

    SHI M Q, TONG X, FANG J, et al. Study on Mo-doped W18O49 composite as support for oxygen reduction catalyst[J]. Journal of Zhejiang University of Technology, 2018, 46(3): 262-269. doi: 10.3969/j.issn.1006-4303.2018.03.005
    [15] 申振广, 彭志坚, 钱静雯, 等. W18O49@Cu2O纳/微米复合材料的制备及其光催化性能[J]. 稀有金属材料与工程, 2018, 47(S1): 174-178. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2018S1039.htm

    SHEN Z G, PENG Z J, QIANJ W, et al. Preparation and photocatalytic performance of W18O49@Cu2O nano/micron composite[J]. Rare Metal Materials and Engineering, 2018, 47(S1): 174-178. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2018S1039.htm
    [16] QIN Y X, ZHANG X J, WANG Y, et al. Remarkable improvement of W18O49/TiO2 heteronanowires in ambient temperature-responsive NO2-sensing abilities and its unexpected n-p transition phenomenon[J]. Sensors and Actuators B: Chemical, 2017, 240: 477-486. doi: 10.1016/j.snb.2016.09.005
    [17] ZHANG J, QIN Z, ZENG D, et al. Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration[J]. Physical Chemistry Chemical Physics, 2017, 19(9): 6313-6329. doi: 10.1039/C6CP07799D
    [18] TONG Y, GUO H, LIU D, et al. Vacancy engineering of iron-doped W18O49 Nanoreactors for low-barrier electrochemical nitrogen reduction[J]. Angewandte Chemie International Edition, 2020, 59(19): 7356-7361. doi: 10.1002/anie.202002029
    [19] QIN Y X, LIU M, HUA D Y. First-priciples study of the electronic structure and NO2 sensing properties of Ti-doped W18O49 nanowire[J]. Acta Physica Science, 2014, 63(20): 207101/1-8. http://en.cnki.com.cn/Article_en/CJFDTOTAL-WLXB201420038.htm
    [20] LIU H Y, HE Y H, MENG G, et al. Discrimination of VOCs molecules via extracting concealed features from a temperature-modulated p-type NiO sensor[J]. Sensors and Actuators B: Chemical, 2019, 293: 342-349. doi: 10.1016/j.snb.2019.04.078
    [21] PUIGDOLLERS A R, SCHLEXER P, TOSONI S, et al. Increasing oxide reducibility: the role of metal/oxide interfaces in the formation of oxygen vacancies[J]. ACS Catalysis, 2017, 7(10): 6493-6513. doi: 10.1021/acscatal.7b01913
    [22] WANG J, CHEN R S, XIANG L, et al. Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: a review[J]. Ceramics International, 2018, 44(7): 7357-7377. doi: 10.1016/j.ceramint.2018.02.013
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  12
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-21
  • 网络出版日期:  2021-07-06
  • 刊出日期:  2021-06-25

目录

    /

    返回文章
    返回