The Effect of Fe(Ⅲ) Doping on Structure and Gas Sensing Properties of Ultrathin W18O49 Nanowires
-
摘要: 针对纯氧化钨纳米材料丙酮传感器存在灵敏度低、选择性差、检测温度高等问题,通过简单的溶剂热法制备Fe掺杂氧化钨(Fe-W18O49)超细纳米线,优化氧化钨材料对丙酮的敏感性能. 结果表明:Fe(Ⅲ)的掺杂不仅抑制了W18O49晶相向WO3晶相的转化,起到了稳定W18O49晶相的作用,而且优化了其气敏性能. 当掺杂比n(Fe)/n(W)为0.10时,其气敏性能最佳. 该材料在最佳工作温度(220 ℃)下对丙酮(体积分数为5×10-5)的灵敏度达11.4,响应/恢复时间为14/16 s,并且对丙酮有很好的选择性.Abstract: Fe(Ⅲ)-doped ultrathin tungsten oxide (Fe-W18O49) nanowires were prepared with the simple solvent-thermal method to optimize the acetone-sensing performance of tungsten oxide acetone sensor materials for reason of the low response, poor selectivity and high detection temperature of pure tungsten oxide. The results showed that Fe(Ⅲ) doping not only inhibited the transformation of W18O49 crystal phase to WO3 crystal phase but also optimized its gas-sensing performance. The W18O49 nanowires with doping ratio (n(Fe)/n(W)) of 0.10 demonstrated the best performance. This material showed a sensitivity of 11.4 for acetone with a volume fraction of 5×10-5 at the optimum operating temperature of 220 ℃, with the response/recovery time of 14/16 s and good selectivity.
-
Key words:
- tungsten oxide /
- Fe(Ⅲ) doping /
- ultrathin nanowires /
- gas sensing properties /
- acetone
-
表 1 EDS分析不同样品中O、W和Fe的物质的量分数
Table 1. The mole fraction of O, W and Fe in different samples under EDS analysis
n(Fe)/n(W) x(O)/% x(W)/% x(Fe)/% 0.05 74.78 24.71 0.51 0.10 74.57 24.57 0.87 0.15 74.51 24.51 0.97 0.20 73.91 23.91 2.17 -
[1] GE Y L, FU K X, ZHAO Q, et al. Performance study of modified Pt catalysts for the complete oxidation of acetone[J]. Chemical Engineering Science, 2019, 206: 499-506. doi: 10.1016/j.ces.2019.05.051 [2] SUN Y, XU J Q, WANG X H, et al. The fabrication and triethylamine sensing performance of In-MIL-68 derived In2O3 with porous lacunaris structure[J]. Sensors and Actuators B: Chemical, 2020, 326: 128791/1-11. http://www.sciencedirect.com/science/article/pii/S0925400520311382 [3] 杜帅航, 王开松, 张文惠, 等. 基于In2O3的高灵敏度乙醇气体传感器[J]. 微纳电子技术, 2020, 57(11): 894-898. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ202011006.htmDU S H, WANG K S, ZHANG W H, et al. High sensitivity ethanol gas sensor based on In2O3[J]. Micro Electronics and Nano Technologies Technology, 2020, 57(11): 894-898. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ202011006.htm [4] LUO N, ZHANG B, XU J Q, et al. Enhanced CO sensing properties of Pd modified ZnO porous nanosheets[J]. Chinese Chemical Letters, 2020, 31: 2033-2036. doi: 10.1016/j.cclet.2020.01.002 [5] JEON I S, BAE G, JANG M, et al. Atomic-level mediation in structural interparameter tradeoff of zinc oxide nano-wires-based gas sensors: ZnO nanofilm/ZnO nanowire homojunction array[J]. Applied Surface Science, 2020, 540: 148350/1-7. http://www.sciencedirect.com/science/article/pii/S016943322033107X [6] LI Y X, LUO N, XU J Q, et al. Rational design and in situ growth of SnO2/CMF composites: insightful understanding of the formaldehyde gas sensing mechanism and enhanced gas sensing properties[J]. Journal of Materials Chemistry C, 2020, 8: 12418-12426. http://pubs.rsc.org/en/content/articlelanding/2020/tc/d0tc01650k [7] DAS S, GIRIJA K G, DEBNATH A K, et al. Enhanced NO2 and SO2 sensor response under ambient conditions by polyol synthesized Ni doped SnO2 nanoparticles[J]. Journal of Alloys and Compounds, 2020, 854: 157276/1-10. http://www.sciencedirect.com/science/article/pii/S0925838820336409 [8] 刘咏梅, 张思凡, 刘敏, 等. MgO掺杂SnO2甲醛传感器的气敏性能[J]. 华南师范大学学报(自然科学版), 2020, 52(3): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202003008.htmLIU Y M, ZHANG S F, LIU M, et al. Gas sensitive performance of MgO doped SnO2 formaldehyde sensor[J]. Journal of South China Normal University(Natural Science Edition), 2020, 52(3): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF202003008.htm [9] ZHANG G N, LENG D Y, ZHANG L G, et al. Porosity and oxygen vacancy engineering of mesoporous WO3 nanofibers for fast and sensitive low-temperature NO2 sensing[J]. Journal of Alloys and Compounds, 2020, 853: 157339/1-14. http://www.sciencedirect.com/science/article/pii/S0925838820337038 [10] LEE J, KOO H, KIM S Y, et al. Electrostatic spray deposition of chemochromic WO3-Pd sensor for hydrogen leakage detection at room temperature[J]. Sensors and Actuators B: Chemical, 2020, 327: 128930/1-8. http://www.sciencedirect.com/science/article/pii/S0925400520312776 [11] 赵林艳, 席晓丽, 樊佑书, 等. 纳米氧化钨的水热/溶剂热法制备及应用的综述[J]. 材料导报, 2019, 33(19): 3203-3209. doi: 10.11896/cldb.18060143ZHAO L Y, XI X L, FAN Y S, et al. Synthesis and application of nano-tungsten oxide by hydrothermal/solvothermal method[J]. Material Review, 2019, 33(19): 3203-3209. doi: 10.11896/cldb.18060143 [12] HE K, ZHAO J, CHU X F, et al. Fast response-recovery time toward acetone by a sensor prepared with Pd doped WO3 nanosheets[J]. Royal Society of Chemistry, 2019, 9: 28439-28450. http://pubs.rsc.org/en/content/articlehtml/2019/ra/c9ra04429a [13] 白玉, 雷云裕, 刘文慧, 等. W18O49的制备、性能和应用研究进展[J]. 化工新型材料, 2018, 46(7): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201807013.htmBAI Y, LIU Y Y, LIU W H, et al. Research progress in preparation and application of W18O49[J]. New Chemical Materials, 2018, 46(7): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201807013.htm [14] 施梅勤, 佟雪, 方军, 等. Mo掺杂W18O49复合材料作为氧还原催化剂载体的研究[J]. 浙江工业大学学报, 2018, 46(3): 262-269. doi: 10.3969/j.issn.1006-4303.2018.03.005SHI M Q, TONG X, FANG J, et al. Study on Mo-doped W18O49 composite as support for oxygen reduction catalyst[J]. Journal of Zhejiang University of Technology, 2018, 46(3): 262-269. doi: 10.3969/j.issn.1006-4303.2018.03.005 [15] 申振广, 彭志坚, 钱静雯, 等. W18O49@Cu2O纳/微米复合材料的制备及其光催化性能[J]. 稀有金属材料与工程, 2018, 47(S1): 174-178. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2018S1039.htmSHEN Z G, PENG Z J, QIANJ W, et al. Preparation and photocatalytic performance of W18O49@Cu2O nano/micron composite[J]. Rare Metal Materials and Engineering, 2018, 47(S1): 174-178. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2018S1039.htm [16] QIN Y X, ZHANG X J, WANG Y, et al. Remarkable improvement of W18O49/TiO2 heteronanowires in ambient temperature-responsive NO2-sensing abilities and its unexpected n-p transition phenomenon[J]. Sensors and Actuators B: Chemical, 2017, 240: 477-486. doi: 10.1016/j.snb.2016.09.005 [17] ZHANG J, QIN Z, ZENG D, et al. Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration[J]. Physical Chemistry Chemical Physics, 2017, 19(9): 6313-6329. doi: 10.1039/C6CP07799D [18] TONG Y, GUO H, LIU D, et al. Vacancy engineering of iron-doped W18O49 Nanoreactors for low-barrier electrochemical nitrogen reduction[J]. Angewandte Chemie International Edition, 2020, 59(19): 7356-7361. doi: 10.1002/anie.202002029 [19] QIN Y X, LIU M, HUA D Y. First-priciples study of the electronic structure and NO2 sensing properties of Ti-doped W18O49 nanowire[J]. Acta Physica Science, 2014, 63(20): 207101/1-8. http://en.cnki.com.cn/Article_en/CJFDTOTAL-WLXB201420038.htm [20] LIU H Y, HE Y H, MENG G, et al. Discrimination of VOCs molecules via extracting concealed features from a temperature-modulated p-type NiO sensor[J]. Sensors and Actuators B: Chemical, 2019, 293: 342-349. doi: 10.1016/j.snb.2019.04.078 [21] PUIGDOLLERS A R, SCHLEXER P, TOSONI S, et al. Increasing oxide reducibility: the role of metal/oxide interfaces in the formation of oxygen vacancies[J]. ACS Catalysis, 2017, 7(10): 6493-6513. doi: 10.1021/acscatal.7b01913 [22] WANG J, CHEN R S, XIANG L, et al. Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: a review[J]. Ceramics International, 2018, 44(7): 7357-7377. doi: 10.1016/j.ceramint.2018.02.013 -