留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SmCo5型中熵、高熵金属间化合物的结构与磁性

郭新鹏 郭永权 王京南 殷林瀚

郭新鹏, 郭永权, 王京南, 殷林瀚. SmCo5型中熵、高熵金属间化合物的结构与磁性[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 1-9. doi: 10.6054/j.jscnun.2021036
引用本文: 郭新鹏, 郭永权, 王京南, 殷林瀚. SmCo5型中熵、高熵金属间化合物的结构与磁性[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 1-9. doi: 10.6054/j.jscnun.2021036
GUO Xinpeng, GUO Yongquan, WANG Jingnan, YIN Linhan. The Structure and Magnetic Properties of SmCo5-type Medium- and High-entropy Intermetallic Compounds[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(3): 1-9. doi: 10.6054/j.jscnun.2021036
Citation: GUO Xinpeng, GUO Yongquan, WANG Jingnan, YIN Linhan. The Structure and Magnetic Properties of SmCo5-type Medium- and High-entropy Intermetallic Compounds[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(3): 1-9. doi: 10.6054/j.jscnun.2021036

SmCo5型中熵、高熵金属间化合物的结构与磁性

doi: 10.6054/j.jscnun.2021036
基金项目: 

国家重点研发项目 2018YFB0905600

详细信息
    通讯作者:

    郭永权,Email: yqguo@ncepu.edu.cn

  • 中图分类号: TB34

The Structure and Magnetic Properties of SmCo5-type Medium- and High-entropy Intermetallic Compounds

  • 摘要: 以SmCo5为原型,设计了3种中熵金属间化合物(Sm1/3Ce1/3Pr1/3)Co5、(Sm1/3Ce1/3Nd1/3)Co5、(Sm1/3Pr1/3Nd1/3)Co5和1种高熵金属间化合物(Sm1/4Ce1/4Pr1/4Nd1/4)Co5,并采用原子半径差和混合焓预测了形成单相结构的可能性. 应用真空电弧熔炼技术成功制备了4种金属间化合物. 采用X射线衍射仪(XRD)、能谱仪(EDS) 和振动样品磁强计(VSM) 表征了样品的物相、成分和磁学性能. 结果表明:4种化合物均为单相,具有六方CaCu5结构,空间群为P6/mmm,稀土原子占据1a位置;稀土位置上的原子浓度为等原子比;化合物的室温磁化行为遵循Langevin模型,磁化强度依赖于化合物的成分;磁价模型计算证实了化合物(Sm1/3Ce1/3Pr1/3)Co5、(Sm1/3Ce1/3Nd1/3)Co5和(Sm1/4Ce1/4Pr1/4Nd1/4)Co5中的Ce为+4价,对磁矩没有贡献.
  • 图  1  4种金属间化合物的XRD图谱

    Figure  1.  The XRD patterns of four intermetallic compounds

    图  2  (Sm1/4Ce1/4Pr1/4Nd1/4)Co5的XRD精修图谱

    Figure  2.  The refined XRD pattern of (Sm1/4Ce1/4Pr1/4Nd1/4)Co5

    图  3  4种金属间化合物粉末的SEM图

    Figure  3.  The SEM images of four intermetallic compounds

    图  4  4种金属间化合物粉末的EDS能谱

    Figure  4.  The EDS patterns of four intermetallic compounds

    图  5  (Sm, R)Co5(R=Ce, Pr, Nd)化合物的室温(300 K)磁化曲线

    Figure  5.  The magnetization curves of (Sm, R)Co5 (R=Ce, Pr, Nd) compounds at room temperature (300 K)

    图  6  块状样品在室温下的磁滞回线

    Figure  6.  The hysteresis loops of bulk samples at room temperature

    图  7  粉末样品在室温下的磁滞回线

    Figure  7.  The hysteresis loops of powder samples at room temperature

    表  1  (Sm1/4Ce1/4Pr1/4Nd1/4)Co5衍射峰的指标化结果

    Table  1.   The index results of diffraction peaks in compound (Sm1/4Ce1/4Pr1/4Nd1/4)Co5

    晶面 2θ实验值 2θ计算值
    100 20.518 20.518
    001 22.241 22.251
    101 30.459 30.447
    110 35.959 35.934
    200 41.740 41.733
    111 42.680 42.674
    002 45.420 45.402
    201 47.820 47.795
    112 59.238 59.215
    211 61.220 61.218
    202 63.343 63.360
    300 64.563 64.591
    301 69.221 69.231
    103 74.543 74.553
    220 76.200 76.186
    注:M(15)=109,F(15)=58.
    下载: 导出CSV

    表  2  (Sm, R)Co5(R=Ce, Pr, Nd) 化合物的晶格参数、品质因子与可信度因子

    Table  2.   The lattice parameters, quality factors and credibility factors of (Sm, R)Co5 (R=Ce, Pr, Nd) compounds

    晶格参数 a/nm c/nm V/nm3 M F
    (Sm1/3Ce1/3Pr1/3)Co5 0.498 6(7) 0.399 2(7) 0.085 98 181 81
    (Sm1/3Ce1/3Nd1/3)Co5 0.498 7(3) 0.299 0(5) 0.085 96 177 98
    (Sm1/3Pr1/3Nd1/3)Co5 0.500 4(4) 0.397 6(5) 0.086 25 105 55
    (Sm1/4Ce1/4Pr1/4Nd1/4)Co5 0.499 4(2) 0.399 1(9) 0.086 23 109 58
    下载: 导出CSV

    表  3  (Sm, R)Co5 (R=Ce, Pr, Nd)化合物的Rietveld精修结果

    Table  3.   The Rietveld refined results of (Sm, R)Co5 (R=Ce, Pr, Nd) compounds

    晶格参数 (Sm1/3Ce1/3Pr1/3)Co5 (Sm1/3Ce1/3Nd1/3)Co5 (Sm1/3Pr1/3Nd1/3)Co5 (Sm1/4Ce1/4Pr1/4Nd1/4)Co5
    a/nm 0.498 51 0.498 45 0.500 82 0.499 25
    c/nm 0.399 31 0.399 02 0.397 84 0.399 08
    V/nm3 0.085 94 0.085 85 0.086 42 0.086 14
    1a(0, 0, 0) Sm Sm Sm Sm
    Ce Ce Ce
    Pr Pr Pr
    Nd Nd Nd
    2c(1/3, 2/3, 0) Co Co Co Co
    3g(1/2, 0, 1/2) Co Co Co Co
    Rp/% 6.190 7.515 7.556 6.705
    Rwp/% 8.044 9.660 10.028 8.585
    s 1.558 1.561 1.363 1.376
    注:空间群为P6/mmm.
    下载: 导出CSV

    表  4  (Sm, R)Co5 (R=Ce, Pr, Nd)化合物的成分分析结果

    Table  4.   The results of composition analysis of (Sm, R) CO5 (R=Ce, Pr, Nd) compounds

    元素 (Sm1/3Ce1/3Pr1/3)Co5 (Sm1/3Ce1/3Nd1/3)Co5 (Sm1/3Pr1/3Nd1/3)Co5 (Sm1/4Ce1/4Pr1/4Nd1/4)Co5
    Sm 5.57 5.62 5.76 3.94
    Ce 5.39 5.43 4.17
    Pr 5.72 5.49 3.97
    Nd 5.73 5.38 4.01
    Co 83.32 83.22 83.36 83.91
    下载: 导出CSV

    表  5  (Sm, R)Co5 (R=Ce, Pr, Nd)化合物的计算磁矩

    Table  5.   The calculated moments of (Sm, R)Co5 (R=Ce, Pr, Nd) compounds

    化合物 μB实验值 Ce3+的计算结果 Ce4+的计算结果
    μB计算值 Nsp 误差/% μB计算值 Nsp 误差/%
    (Sm1/3Ce1/3Pr1/3)Co5 6.24 7.02 0 12.50 6.30 0 0.96
    (Sm1/3Ce1/3Nd1/3)Co5 6.37 7.04 0 10.52 6.33 0 0.63
    (Sm1/3Pr1/3Nd1/3)Co5 8.74 8.60 0.1 1.60 8.60 0.1 1.60
    (Sm1/4Ce1/4Pr1/4Nd1/4)Co5 6.88 7.33 0 6.54 6.80 0 1.16
    下载: 导出CSV
  • [1] YEH J W, LIN S J, CHIN T S, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements[J]. Metallurgical & Materials Transactions A, 2004, 35(8): 2533-2536. doi: 10.1007/s11661-006-0234-4
    [2] JUAN C C, TSAI M H, TSAI C W, et al. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys[J]. Intermetallics, 2015, 62: 76-83. doi: 10.1016/j.intermet.2015.03.013
    [3] NENE S S, FRANK M, LIU K, et al. Corrosion-resistant high entropy alloy with high strength and ductility[J]. Scripta Materialia, 2019, 166: 168-172. doi: 10.1016/j.scriptamat.2019.03.028
    [4] LI J, GAO B, TANG S, et al. High temperature deformation behavior of carbon-containing FeCoCrNiMn high entropy alloy[J]. Journal of Alloys and Compounds, 2018, 747: 571-579. doi: 10.1016/j.jallcom.2018.02.332
    [5] LI P, WANG A, LIU C T. A ductile high entropy alloy with attractive magnetic properties[J]. Journal of Alloys and Compounds, 2017, 694: 55-60. doi: 10.1016/j.jallcom.2016.09.186
    [6] MISHRA R K, SHAHI R R. Effect of annealing conditions and temperatures on phase formation and magnetic beha-viour of CrFeMnNiTi high entropy alloy[J]. Journal of Magnetism and Magnetic Materials, 2018, 465: 169-175. doi: 10.1016/j.jmmm.2018.04.056
    [7] YANG T, ZHAO Y L, TONG Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys[J]. Science, 2018, 362: 933-937. doi: 10.1126/science.aas8815
    [8] YADAV T P, MUKHOPADHYAY S, MISHRA S S, et al. Synthesis of a single phase of high-entropy Laves intermetallics in the Ti-Zr-V-Cr-Ni equiatomic alloy[J]. Philosophical Magazine Letters, 2017, 97(12): 494-503. doi: 10.1080/09500839.2017.1418539
    [9] ZHOU N, JIANG S, HUANG T, et al. Single-phase high-entropy intermetallic compounds (HEICs): bridging high-entropy alloys and ceramics[J]. Science Bulletin, 2019, 64(12): 856-864. doi: 10.1016/j.scib.2019.05.007
    [10] STRNAT K J, STRNAT R M W. Rare earth-cobalt permanent magnets[J]. Journal of Magnetism and Magnetic Materials, 1991, 100(1): 38-56.
    [11] NORDSTR M L, ERIKSSON O, BROOKS M S S, et al. Theory of ferromagnetism in CeCo5[J]. Physical Review B, 1990, 41(13): 9111-9120. doi: 10.1103/PhysRevB.41.9111
    [12] FRANSE J J M, RADWAŃSKI R J. Handbook of magne-tic materials[M]. Amsterdam: Elsevier, 1993: 307-501.
    [13] PARETI L, MOZE O, SOLZI M, et al. Magnetocrystalline anisotropy in Y1-xPrxCo5[J]. Journal of Applied Phy-sics, 1988, 63(1): 172-175. doi: 10.1063/1.340485
    [14] RAO J E G U S. An analysis of the rare earth contribution to the magnetic anisotropy in RCo5 and R2Co17 compounds[J]. Journal of Solid State Chemistry, 1973, 6: 387-395. doi: 10.1016/0022-4596(73)90228-4
    [15] ALAMEDA J M, GIVORD D, LEMAIRE R Q, et al. Co energy and magnetization anisotropies in RCo5 intermetallics between 4.2 K and 300 K[J]. Journal of Applied Physics, 1981, 52(3): 2079-2081. doi: 10.1063/1.329622
    [16] WANG K, ZHANG M, OUYANG Y, et al. Enhancement of rotating magnetocaloric effect by Fe substitution in NdCo5-xFex alloys[J]. Intermetallics, 2020, 118: 106676/1-7. http://www.sciencedirect.com/science/article/pii/S0966979519309458
    [17] 梁翠芬, 熊予莹, 初本莉, 等. 磁性纳米Fe3O4/TiO2复合材料的制备[J]. 华南师范大学学报(自然科学版), 2010(2): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201002014.htm

    LIANG C F, XIONG Y Y, CHU B L, et al. Sythesis of magnetie nanometer Fe3O4 powder and Fe3O4/TiO2 composite material[J]. Journal of South China Normal University(Natural Science Edition), 2010(2): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201002014.htm
    [18] 戚平, 周庆琼, 林子豪, 等. 磁性固相萃取-液相色谱法测定环境水样中多种碱性染料[J]. 华南师范大学学报(自然科学版), 2015, 47(2): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201502011.htm

    QI P, ZHOU Q Q, LIN Z H, et al. Determination of basic dyes in environmental water by magnetic solid phase extraction high performance liquid chromatography[J]. Journal of South China Normal University(Natural Science Edition), 2015, 47(2): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201502011.htm
    [19] FANG L, ZHANG T, WANG H, et al. Effect of ball milling process on coercivity of nanocrystalline SmCo5 magnets[J]. Journal of Magnetism and Magnetic Materials, 2018, 446: 200-205. doi: 10.1016/j.jmmm.2017.09.012
    [20] CUI B Z, LI W F, HADJIPANAYIS G C. Formation of SmCo5 single-crystal submicron flakes and textured polycrystalline nanoflakes[J]. Acta Materialia, 2011, 59(2): 563-571. doi: 10.1016/j.actamat.2010.09.060
    [21] TAKEUCHI A, AKIHISA I. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 2005, 46(12): 2817-2829. doi: 10.2320/matertrans.46.2817
    [22] YANG X, ZHANG Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Materials Chemistry and Physics, 2012, 132(2/3): 233-238. http://www.sciencedirect.com/science/article/pii/S0254058411009357
    [23] GUO X P, GUO Y Q. Effects on structure and magnetic properties of SmCo5 based intermetallic compounds by increasing configuration entropy from binary to quaternary equiatomic rare earths at Sm site[J]. Journal of Alloys and Compounds, 2020, 813: 152230/1-8.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  13
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-18
  • 网络出版日期:  2021-07-06
  • 刊出日期:  2021-06-25

目录

    /

    返回文章
    返回