留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带变号格林函数的三阶三点边值问题的正解的存在性

雷策宇 韩晓玲

雷策宇, 韩晓玲. 带变号格林函数的三阶三点边值问题的正解的存在性[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 104-109. doi: 10.6054/j.jscnun.2021032
引用本文: 雷策宇, 韩晓玲. 带变号格林函数的三阶三点边值问题的正解的存在性[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 104-109. doi: 10.6054/j.jscnun.2021032
LEI Ceyu, HAN Xiaoling. The Existence of Positive Solutions to A Third-order Three-point Boundary Value Problem with Sign-changing Green's Function[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(2): 104-109. doi: 10.6054/j.jscnun.2021032
Citation: LEI Ceyu, HAN Xiaoling. The Existence of Positive Solutions to A Third-order Three-point Boundary Value Problem with Sign-changing Green's Function[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(2): 104-109. doi: 10.6054/j.jscnun.2021032

带变号格林函数的三阶三点边值问题的正解的存在性

doi: 10.6054/j.jscnun.2021032
基金项目: 

国家自然科学基金项目 11561063

详细信息
    通讯作者:

    韩晓玲, Email: hanxiaoling9@163.com

  • 中图分类号: O175.8

The Existence of Positive Solutions to A Third-order Three-point Boundary Value Problem with Sign-changing Green's Function

  • 摘要: 应用格林函数的性质和迭代法, 研究了一类具有变号格林函数的三阶三点边值问题 $\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} u'''\left( t \right) = f\left( {t,u\left( t \right)} \right)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {t \in \left[ {0,1} \right]} \right),\\ u\left( 1 \right) = 0,u'\left( 0 \right) = u''\left( 0 \right),\alpha u''\left( \eta \right) + \beta u\left( 0 \right) = 0 \end{array} \end{array}} \right.$ 正解的存在性, 其中, fC([0, 1]×[0, ∞), [0, ∞)), α∈[0, 1], $\frac{2}{7}$α < β < $\frac{2}{3}$α, η∈[$\frac{2}{3}$, 1). 得到了该边值问题正解存在性的条件.
  • [1] SUN Y P. Positive solutions of singular third-order three-point boundary value problem[J]. Journal of Mathematical Analysis and Applications, 2005, 306(2): 589-603. doi: 10.1016/j.jmaa.2004.10.029
    [2] GUO L J, SUN J P, ZHAO Y H. Existence of positive solutions for nonlinear third-order three-point boundary value problems[J]. Nonlinear Analysis, 2008, 68(10): 3151-3158. doi: 10.1016/j.na.2007.03.008
    [3] YAO Q L. The existence and multiplicity of positive solutions for a third-order three-point boundary value pro-blem[J]. Acta Mathematicae Applicatae Sinica, 2003, 19(1): 117-122. doi: 10.1007/s10255-003-0087-1
    [4] YAO Q L. Positive solutions of singular third-order three-point boundary value problems[J]. Journal of Mathematical Analysis and Applications, 2009, 354(1): 207-212. doi: 10.1016/j.jmaa.2008.12.057
    [5] TORRES F J. Positive solutions for a third-order three-point boundary-value problem[J]. Electronic Journal of Differential Equations, 2013, 2013(147): 1-11.
    [6] JANKOWSKI T. Existence of positive solutions to third order differential equations with advanced arguments and nonlocal boundary conditions[J]. Nonlinear Analysis Theory Methods and Applications, 2012, 75(2): 913-923. doi: 10.1016/j.na.2011.09.025
    [7] PALAMIDES A P, STAVRAKAKIS N M. Existence and uniqueness of a positive solution for a third-order three-point boundary-value problem[J]. Electronic Journal of Differential Equations, 2010, 2010(155): 1-12. http://www.ams.org/mathscinet-getitem?mr=2740596
    [8] SUN J P, ZHAO J. Multiple positive solutions for a third-order three-point BVP with sign-changing Green's function[J]. Electronic Journal of Differential Equations, 2012, 2012(118): 1-7. http://www.ams.org/mathscinet-getitem?mr=3065778
    [9] LI X L, SUN J P, KONG F D. Existence of positive solution for a third-order three-point BVP with sign-changing Green's function[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2013(30): 1-11. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=90330242&site=ehost-live
    [10] GAO L J, SUN J P. Positive solutions of a third-order three-point BVP with sign-changing Green's function[J]. Mathematical Problems in Engineering, 2014, 2014: 406815/1-6. http://www.ams.org/mathscinet-getitem?mr=3065778
    [11] ZHAO Y H, LI X L. Iteration for a third-order three-point BVP with sign-changing Green's function[J]. Journal of Applied Mathematics, 2014, 2014: 541234/1-6. http://www.ams.org/mathscinet-getitem?mr=3065778
    [12] XU Y J, TIAN W W, GAO C H. Existence of positive solutions of discrete third-order three-point BVP with sign-changing Green's function[J]. Advances in Difference Equations, 2019, 2019: 206/1-19. http://www.researchgate.net/publication/333432465_Existence_of_positive_solutions_of_discrete_third-order_three-point_BVP_with_sign-changing_Green's_function
    [13] WANG J, GAO C H. Positive solutions of discrete third-order boundary value problems with sign-changing Green's function[J]. Advances in Difference Equations, 2015, 2015: 56/1-10.
    [14] HAI D D. Existence of positive solutions for periodic boundary value problem with sign-changing Green's function[J]. Positivity, 2018, 22(5): 1269-1279. doi: 10.1007/s11117-018-0573-6
    [15] ELSANOSI M E M. Positive solutions of nonlinear neumann boundary value problems with sign-changing Green's function[J]. Kyungpook Mathematical Journal, 2019, 59(1): 65-71. http://www.researchgate.net/publication/332321002_Positive_Solutions_of_Nonlinear_Neumann_Boundary_Value_Problems_with_Sign-Changing_Green's_Function
    [16] 达举霞, 霍梅, 韩晓玲. 带变号格林函数的四阶三点边值问题的多个正解的存在性[J]. 华南师范大学学报(自然科学版), 2017, 49(3): 109-113. http://journal-n.scnu.edu.cn/article/id/3845

    DA J X, HUO M, HAN X L. Existence of multiple positive solutions for a fourth-order three-point BVP with sign-changing Green's function[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(3): 109-113. http://journal-n.scnu.edu.cn/article/id/3845
    [17] DJOURDEM H, BENAICHA S, BOUTERAA N. Two positive solutions for a fourth-order three-point BVP with sign-changing Green's function[J]. Communications in Advanced Mathematical Sciences, 2019, 2(1): 60-68. http://www.ams.org/mathscinet-getitem?mr=3065778
    [18] 郭大钧. 非线性泛函分析[M]. 济南: 山东科学技术出版社, 2002.
    [19] 程其襄. 实变函数与泛函分析基础[M]. 北京: 高等教育出版社, 1983.
  • 加载中
计量
  • 文章访问数:  124
  • HTML全文浏览量:  43
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-02
  • 网络出版日期:  2021-04-29
  • 刊出日期:  2021-04-25

目录

    /

    返回文章
    返回