留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用剩余活性污泥制备洗涤用酶制剂的研究

陈梦涛 王俊华 张子明 范晓敏 倪贺 李海航

陈梦涛, 王俊华, 张子明, 范晓敏, 倪贺, 李海航. 利用剩余活性污泥制备洗涤用酶制剂的研究[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 65-72. doi: 10.6054/j.jscnun.2021028
引用本文: 陈梦涛, 王俊华, 张子明, 范晓敏, 倪贺, 李海航. 利用剩余活性污泥制备洗涤用酶制剂的研究[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 65-72. doi: 10.6054/j.jscnun.2021028
CHEN Mengtao, WANG Junhua, ZHANG Ziming, FAN Xiaoming, NI He, LI Haihang. The Preparation of Compound Hydrolases for Detergent from Excess Activated Sludge[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(2): 65-72. doi: 10.6054/j.jscnun.2021028
Citation: CHEN Mengtao, WANG Junhua, ZHANG Ziming, FAN Xiaoming, NI He, LI Haihang. The Preparation of Compound Hydrolases for Detergent from Excess Activated Sludge[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(2): 65-72. doi: 10.6054/j.jscnun.2021028

利用剩余活性污泥制备洗涤用酶制剂的研究

doi: 10.6054/j.jscnun.2021028
基金项目: 

广东省自然科学基金项目 2017A030310031

详细信息
    通讯作者:

    李海航,Email:li8341@163.com

  • 中图分类号: R284.2

The Preparation of Compound Hydrolases for Detergent from Excess Activated Sludge

  • 摘要: 研究了剩余活性污泥中复合水解酶的提取分离及制成洗涤用复合水解酶制剂的方法. 离心脱水的污泥按料液比1∶2加入1%的Triton X-100水溶液搅拌提取60 min,蛋白酶的提取率为71.7%;酶提取液经膜分离和浓缩后用70%乙醇沉淀,沉淀经冷冻干燥得复合水解酶粉末,每千克剩余活性污泥可制备1.7 g复合水解酶粉,其中胶原蛋白酶、碱性蛋白酶、脂肪酶、淀粉酶、纤维素酶的酶活分别为4.216、3.714、11.915、3.060和1.291 U/mg;在复合水解酶液中加入由4%蔗糖、4%甘露醇、30 mmol/L甘氨酸和10 mmol/L MgSO4组成的复合稳定剂可大大延长酶的保存期;再按固体物比4%复合酶粉末、10%硅藻土、10%可溶性淀粉、6%复合稳定剂、70%十水硫酸钠的配方制成洗涤用酶颗粒制剂. 酶颗粒制剂的主要酶种类与酶活性与市售商品洗涤用酶制剂一致,可用于作洗涤的酶添加剂. 本研究为剩余活性污泥的资源化利用提供了新的途径.
  • 图  1  剩余活性污泥中复合水解酶提取条件的筛选

    注:*表示P < 0.05,**表示P < 0.01, 下图同.

    Figure  1.  The selection of extraction conditions of complex hydrolase from activated sludge

    图  2  复合水解酶提取液中各酶的相对分子量分布

    Figure  2.  The molecular weight distribution of complex hydrolase in the extracts from activated sludge

    图  3  乙醇沉淀酶浓缩液中复合水解酶的条件筛选

    注:图 3C中原液的pH为7.5.

    Figure  3.  The screening of conditions for ethanol precipitation of compound hydrolases

    图  4  复合水解酶热稳定剂的筛选

    Figure  4.  The screening of thermal stabilizers for the complex hydrolases

    图  5  室温下洗涤用颗粒酶制剂中脂肪酶的储存稳定性

    Figure  5.  The enzyme storage stability of lipase in the enzyme granules at room temperature

    表  1  小试与中试实验制备的酶制剂中酶活性与回收率

    Table  1.   The enzyme activities and recoveries in the small- and enlarged-scale preparation

    实验
    规模
    酶种类 酶活/
    (U·mg-1)
    酶活
    回收率/%
    小试实验(5 kg) 胶原蛋白酶 4.258±0.667 36.3
    碱性蛋白酶 3.656±0.391 27.0
    脂肪酶 14.152±2.796 30.8
    淀粉酶 5.028±0.472 10.9
    纤维素酶 1.268±0.188 10.7
    中试实验(50 kg) 胶原蛋白酶 4.216±0.845 41.3
    碱性蛋白酶 3.714±0.408 30.7
    脂肪酶 11.915±1.425 33.6
    淀粉酶 3.060±0.556 15.5
    纤维素酶 1.291±0.080 11.6
    注: 表中数据为平均值±标准差,n=3.
    下载: 导出CSV

    表  2  复合水解酶L9(34)正交实验表

    Table  2.   The table of orthogonal experiment with compound hydrolase L9(34)

    编号 A
    w(蔗糖)/
    %
    B
    w(甘露醇)/
    %
    C
    c(甘氨酸)/
    mmol/L
    D
    c(MgSO4)/
    mmol/L
    1 2 2 20 10
    2 3 3 30 20
    3 4 4 40 30
    下载: 导出CSV

    表  3  复合水解酶L9(34)正交实验设计及结果

    Table  3.   The design and results of orthogonal experiment with compound hydrolase L9(34)

    编号 A B C D 复合水解酶的
    t1/2/min
    1 1 1 1 1 197.3
    2 1 2 2 2 183.7
    3 1 3 3 3 141.6
    4 2 1 2 3 161.7
    5 2 2 3 1 215.9
    6 2 3 1 2 270.3
    7 3 1 3 2 242.8
    8 3 2 1 3 233.7
    9 3 3 2 1 314.9
    K1 522.6 601.8 701.3 728.1
    K2 647.9 633.3 660.3 696.8
    K3 791.4 726.8 600.3 537.0
    k1 174.2 200.6 233.8 242.7
    k2 216.0 211.1 220.1 232.3
    k3 263.8 242.3 200.1 179.0
    R 89.6 41.7 33.7 63.7
    下载: 导出CSV

    表  4  市售和制备的洗涤剂用颗粒酶制剂比较

    Table  4.   The comparison of commercial and prepared granular enzyme preparations for detergent

    酶的种类 酶活性/(U·mg-1)
    制备的洗涤用
    酶颗粒制剂
    市售洗涤用
    酶制剂
    碱性蛋白酶 1.527±0.656 4.527±0.656
    脂肪酶 5.935±0.771 6.515±0.518
    淀粉酶 1.015±0.290 31.461±5.782
    纤维素酶 0.479±0.108 2.977±0.385
    注: 表中数据为平均值±标准差,n=3.
    下载: 导出CSV
  • [1] 赵顺顺. 剩余污泥蛋白质提取及其作为动物饲料添加剂的可行性研究[D]. 青岛: 中国海洋大学, 2007.

    ZHAO S S. Extraction of protein from waste sludge and its feasibility as an animal feed additive[D]. Qingdao: Ocean University of China, 2007.
    [2] 蔡家璇, 张盼月, 张光明. 城市污泥中蛋白质资源化的研究进展[J]. 环境工程, 2019, 37(3): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201903004.htm

    CAI J X, ZHANG P Y, ZHANG G M. Research progress on protein resource utilization in municipal sludge[J]. Environmental Engineering, 2019, 37(3): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201903004.htm
    [3] TEOH S K, LI L Y. Feasibility of alternative sewage sludge treatment methods from a lifecycle assessment (LCA) perspective[J]. Journal of Cleaner Production, 2020, 247: 1-20. http://www.sciencedirect.com/science/article/pii/S0959652619343653
    [4] VINAY K T, SHANG L L. Sludge: a waste or renewable source for energy and resources recovery?[J]. Renewable and Sustainable Energy Reviews, 2013, 25: 708-728. doi: 10.1016/j.rser.2013.05.029
    [5] BLANCHARD M, TEIL M J, OLLIVON D, et al. Polycyclic aromatic hydrocarbons and polychlorobiphenyls in wastewaters and sewage sludges from the Paris area (France)[J]. Environmental Research, 2004, 95(2): 184-197. doi: 10.1016/j.envres.2003.07.003
    [6] AL-GHEETHI A, NOMAN E, BALA J D, et al. Removal of pathogenic bacteria from sewagetreated effluent and biosolids for agricultural purposes[J]. Applied Water Science, 2018, 8(2): 74: 92-97.
    [7] LI R D, TENG W C, LI Y L, et al. Potential recovery of phosphorus during the fluidized bed incineration of sewage sludge[J]. Journal of Cleaner Production, 2017, 140(2): 964-970. http://www.sciencedirect.com/science/article/pii/S0959652616308642
    [8] NI H, FAN X M, GUO H N, et al. Comprehensive utilization of activated sludge for preparation of hydrolytic enzymes, polyhydroxyalkanoates and water-retaining organic fertilizer[J]. Preparative Biochemistry & Biotechnology, 2017, 47(6): 611-618. http://www.ncbi.nlm.nih.gov/pubmed/28165864
    [9] 赵向阳. 响应面法酶解剩余活性污泥中微生物蛋白质研究[J]. 华南师范大学学报(自然科学版), 2014(46): 85-91. doi: 10.6054/j.jxcnun.2014.06.126

    ZHAO X Y. Enzymatic hydrolysis of microbial protein from excess activated sludge by Response Surface Methodology[J]. Journal of South China Normal University (Natural Science Edition), 2014(46): 85-91. doi: 10.6054/j.jxcnun.2014.06.126
    [10] KARN S K, KUMAR A. Hydrolytic enzyme protease in sludge: recovery and its application[J]. Biotechnology and Bioprocess Engineering, 2015, 20(4): 652-661. doi: 10.1007/s12257-015-0161-6
    [11] GARCIA M, URREA J L, COLLADO S, et al. Protein recovery from solubilized sludge by hydrothermal treatments[J]. Waste Management, 2017, 67: 278-287. doi: 10.1016/j.wasman.2017.05.051
    [12] 李恺, 叶志平, 李焕文, 等. 表面活性剂CTAC对活性污泥的脱水性能及其机理研究[J]. 华南师范大学学报(自然科学版), 2010(2): 76-81. http://journal-n.scnu.edu.cn/article/id/206

    LI K, YE Z P, LI H W et al. Study on dewatering performance and mechanism of surfactant CTAC for activated sludge[J]. Journal of South China Normal University (Natural Science Edition), 2010(2): 76-81. http://journal-n.scnu.edu.cn/article/id/206
    [13] DANIEL J A, FUNSO E O. Experimental investigations on the effects of carbon and nitrogen sources on concomitant amylase and polygalacturonase production byTrichoderma viride, BITRS-1001 in submerged fermentation[J]. Biotechnology Research International, 2012(2012): 904763/1-8. http://pubmedcentralcanada.ca/pmcc/articles/PMC3418636/
    [14] 王小骊, 柳爱春, 邹晓庭, 等. 蛋白酶制剂蛋白酶活力的测定福林法: GB/T 28715-2012[S]. 北京: 中国标准出版社, 2012-09-03.
    [15] 张渊舒, 罗琴, 攸德伟. 植酸酶颗粒剂生产工艺的研究[J]. 江西农业学报, 2011(5): 128-129, 139. https://www.cnki.com.cn/Article/CJFDTOTAL-JXNY201105041.htm

    ZHANG Y S, LUO Q, YOU D W. Study on the production process of phytase granules[J]. JiangXi Journal of Agricultural Sciences, 2011(5): 128-129, 139. https://www.cnki.com.cn/Article/CJFDTOTAL-JXNY201105041.htm
    [16] NABARLATZ D, VONDRYSOVA J, JENICEK P, et al. Hydrolytic enzymes in activated sludge: extraction of protease and lipase by stirring and ultrasonication[J]. Ultrasonics Sonochemistry, 2010, 17(5): 923-931. doi: 10.1016/j.ultsonch.2010.02.006
    [17] KARN S K, KUMAR P, PAN X. Extraction of lipase ansprotease and characterization of activated sludge from pulp and paper industry[J]. Preparative Biochemistry & Biotechnology, 2013, 43(2): 152-162. http://europepmc.org/abstract/MED/23302103
    [18] NABARLATZ D, FRANK S, FONT J, et al. Extraction and purification of hydrolytic enzymes from activated sludge[J]. Resources, Conservation and Recycling, 2012, 59: 9-13. doi: 10.1016/j.resconrec.2011.06.017
    [19] CAPITO F, SKUDAS R, BERND S. Polyelectrolyte-protein interaction at low ionic strength: required chain flexibility depending on protein average charge[J]. Colloid & Polymer Science, 2013, 291(7): 1759-1769. doi: 10.1007/s00396-013-2911-3
    [20] SEKIGUCHI S, HASHIDA Y, YASUKAWA K, et al. Stabilization of bovine intestine alkaline phosphatase bysugars[J]. Bioscience Biotechnology and Biochemistry, 2012, 76(1): 95-100. doi: 10.1271/bbb.110553
    [21] HAN Q H, SUN X H, XU M X, et al. 3-Deazaadenosine, a stabilizer of whole-blood homocysteine content, does not interfere with the single-enzyme homocysteine assay while totally inhibiting the enzyme conversion homocysteine immunoassay[J]. Clinical Chemistry, 2020, 9: 8-9.
    [22] 任立均, 刘龙, 刘松, 等. 谷氨酰胺转氨酶热稳定剂优化[J]. 食品与发酵工业, 2018, 44(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX201801001.htm

    REN L J, LIU L, LIU S, et al. Optimization of heat stabilizer of transglutaminase[J]. Food and Fermentation Industry, 2018, 44(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX201801001.htm
    [23] ZHANG J, LI M, ZHANG Y. Enhancing the thermostability of recombinant cyclodextrin glucanotransferase via optimized stabilizer[J]. Process Biochemistry, 2018, 67: 64-70. doi: 10.1016/j.procbio.2018.02.006
    [24] PAZHANG M, MEHRNEJAD F, PAZHANG Y, et al. Effect of sorbitol and glycerol on the stability of trypsinand difference between their stabilization effects in the various solvents[J]. Biotechnology and Applied Biochemistry, 2016, 63(2): 206-213. doi: 10.1002/bab.1366
    [25] KUMAR V, CHARI R, SHARMA V K, et al. Modulation of the thermodynamic stability of proteins by polyols: significance of polyol hydrophobicity and impact on the chemical potential of water[J]. International Journal of Pharmaceutics, 2011, 413(1/2): 19-28. http://www.ncbi.nlm.nih.gov/pubmed/21515346
    [26] 张京良, 姜言晖, 朱常亮, 等. 复合保护剂对透明质酸酶的稳定性研究[J]. 食品工业科技, 2018(13): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201813005.htm

    ZHANG J L, JIANG Y H, ZHU C L, et al. Study on the stability of compound protective agent to hyaluronidase[J]. Food Industry Technology, 2018(13): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201813005.htm
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  13
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-11
  • 网络出版日期:  2021-04-29
  • 刊出日期:  2021-04-25

目录

    /

    返回文章
    返回