留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甘松新酮对H9C2心肌细胞低氧损伤的作用及其机制

李红艳 赵思涵 梅显运 陈政 李旭光 孙芳云

李红艳, 赵思涵, 梅显运, 陈政, 李旭光, 孙芳云. 甘松新酮对H9C2心肌细胞低氧损伤的作用及其机制[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 51-58. doi: 10.6054/j.jscnun.2021026
引用本文: 李红艳, 赵思涵, 梅显运, 陈政, 李旭光, 孙芳云. 甘松新酮对H9C2心肌细胞低氧损伤的作用及其机制[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 51-58. doi: 10.6054/j.jscnun.2021026
LI Hongyan, ZHAO Sihan, MEI Xianyun, CHEN Zheng, LI Xuguang, SUN Fangyun. The Effect of Nardosinone on Hypoxic Injury of H9C2 Cardiomyocytes and Its Mechanism[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(2): 51-58. doi: 10.6054/j.jscnun.2021026
Citation: LI Hongyan, ZHAO Sihan, MEI Xianyun, CHEN Zheng, LI Xuguang, SUN Fangyun. The Effect of Nardosinone on Hypoxic Injury of H9C2 Cardiomyocytes and Its Mechanism[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(2): 51-58. doi: 10.6054/j.jscnun.2021026

甘松新酮对H9C2心肌细胞低氧损伤的作用及其机制

doi: 10.6054/j.jscnun.2021026
基金项目: 

西藏自治区科技厅项目 2015ZR-14-15

陕西省教育厅科学研究项目 18JK1179

西藏自治区高校青年教师创新支持计划项目 QCZ2016-35

详细信息
    通讯作者:

    李红艳,Email: lhy516@163.com

  • 中图分类号: R91

The Effect of Nardosinone on Hypoxic Injury of H9C2 Cardiomyocytes and Its Mechanism

  • 摘要: 以氯化钴(CoCl2)构建H9C2心肌细胞低氧损伤模型,研究Nar在其中的作用及机制. CCK-8试剂盒检测细胞活力,流式细胞仪测细胞凋亡,以自噬抑制剂3-MA预作用细胞探讨Nar对自噬的影响,Western Blot检测Beclin-1、LC3II/LC3I、P62、Bax、Bcl-2和Caspase-3蛋白表达,分光光度计测定乳酸脱氢酶(LDH)、超氧化物歧化酶(SOD)、丙二醛(MDA)和肌酸激酶(CK)含量. 结果显示:CoCl2 (500 μmol/L)可抑制约50 %细胞生长,而Nar (50 μmol/L)预处理显著减轻了CoCl2 (500 μmol/L)诱导的细胞凋亡;另外,Nar通过增加LC3II/LC3I和Beclin-1表达及促进P62降解激活了自噬,但3-MA预作用逆转了该过程;3-MA预作用同时逆转了Nar对CoCl2造成的H9C2细胞凋亡和氧化损伤的保护作用. 研究表明:Nar在心肌细胞低氧损伤中以诱导自噬抑制凋亡的方式保护心肌细胞,Nar可能成为治疗低氧性心脏病的潜在药物.
  • 图  1  Nar对CoCl2诱导H9C2细胞损伤的影响

    注:与0 μmol/L CoCl2组比较,*表示P < 0.05,**表示P < 0.01;与500 μmol/L CoCl2组比较,#表示P < 0.05,##表示P < 0.01.

    Figure  1.  The effect of Nar on CoCl2-induced cell injury in H9C2 cells

    图  2  Nar对CoCl2诱导细胞凋亡的影响

    注:与对照组比较,*表示P < 0.05,**表示P < 0.01;与CoCl2组比较,#表示P < 0.05,##表示P < 0.01.

    Figure  2.  The effect of Nar on CoCl2-induced apoptosis

    图  3  Nar对CoCl2诱导H9C2细胞损伤与自噬的关系

    注:与对照组比较,*表示P < 0.05,**表示P < 0.01;与CoCl2组比较,#表示P < 0.05,##表示P < 0.01;与Nar+CoCl2组比较,∧∧表示P < 0.01.

    Figure  3.  The function of Nar in CoCl2 inducing H9C2 cell injury and its relationship with autophagy

    图  4  Nar抑制CoCl2诱导H9C2细胞凋亡与自噬的关系

    注:与对照组比较,*表示P < 0.05,**表示P < 0.01;与CoCl2组比较,#表示P < 0.05,##表示P < 0.01;与Nar+CoCl2组比较,∧表示P < 0.05,∧∧表示P < 0.01. 图 5同.

    Figure  4.  The relationship between Nar inhibiting CoCl2-induced H9C2 cell apoptosis and autophagy

    图  5  Nar减轻CoCl2诱导H9C2细胞凋亡与氧化应激的关系

    Figure  5.  The relationship between Nar alleviating CoCl2-induced H9C2 cell apoptosis and oxidative stress

  • [1] MOHAMMAD H F, ASHKAN A, LILY T A, et al. GBD risk factors collaborators global regional, and national comparative risk assessment of 79 behavioural, environmental and occupational and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the global burden of disease study[J]. Lancet, 2016, 388(10053): 1659-1724. doi: 10.1016/S0140-6736(16)31679-8
    [2] CATANA C S, ATANASOV A G, BERINDAN-NEAGOE I. Natural products with anti-aging potential: affected targets and molecular mechanisms[J]. Biotechnology Advances, 2018, 36(6): 1649-1656. doi: 10.1016/j.biotechadv.2018.03.012
    [3] DONG Z, CHU G, SIMA Y, et al. Djhsp90s are crucial regulators during planarian regeneration and tissue homeostasis[J]. Biochemical and Biophysical Research Communications, 2018, 498(4): 723-728. doi: 10.1016/j.bbrc.2018.03.047
    [4] ZHANG Q Y, JIN H F, CHEN S, et al. Hydrogen sulfide regulating myocardial structure and function by targeting cardiomyocyte autophagy[J]. Chinese Medical Journal, 2018, 131(7): 839-844. doi: 10.4103/0366-6999.228249
    [5] WANG L, LI Y, NING N, et al. Decreased autophagy induced by β1-adrenoceptor autoantibodies contributes to cardiomyocyte apoptosis[J]. Cell Death Discovery, 2018, 9(3): 1-13. http://europepmc.org/abstract/MED/29540670
    [6] LI J, ZHANG D, WIERSMA M, et al. Role of autophagy in proteostasis: friend and foe in cardiac diseases[J]. Cells, 2018, 7(12): 1-19. http://www.researchgate.net/publication/329793230_Role_of_Autophagy_in_Proteostasis_Friend_and_Foe_in_Cardiac_Diseases/download
    [7] LI P, MATSUNAGA K, YAMAKUNI T, et al. Nardosinone, the first enhancer of neurite outgrowth-promoting activity of staurosporine and dibutyryl cyclic AMP in PC12D cells[J]. Developmental Brain Research, 2003, 145(2): 177-183. doi: 10.1016/S0165-3806(03)00239-6
    [8] 李玮, 石晋丽, 李琴, 等. 甘松新酮对缺糖缺氧损伤原代培养神经元的保护作用[J]. 药学学报, 2013, 48(9): 1422-1429. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXB201309012.htm

    LI W, SHI J L, LI Q, et al. Nardosinone reduces neuronal injury induced by oxygen-glucose deprivation in primary cortical cultures[J]. Acta Pharmaceutica Sinica, 2013, 48(9): 1422-1429. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXB201309012.htm
    [9] KO W, PARK J S, KIM K W, et al. Nardosinone-type sesquiterpenes from the hexane fraction of nardostachys jatamansi attenuate NF-κB and MAPK signaling pathways in lipopolysaccharide-stimulated BV2 microglial cells[J]. Inflammation, 2018, 41(4): 1215-1228. doi: 10.1007/s10753-018-0768-9
    [10] GALLO S, GATTI S, SALA V, et al. Agonist antibodies activating the Met receptor protect cardiomyoblasts from cobalt chloride-induced apoptosis and autophagy[J]. Cell Death Discovery, 2014, 5(4): 1-12. http://europepmc.org/abstract/MED/24743740
    [11] LI Z H, LI W, SHI J L, et al. Nardosinone improves the proliferation, migration and selective differentiation of mouse embryonic neural stem cells[J]. PloS One, 2014, 9(3): 1-7. http://europepmc.org/abstract/med/24614893
    [12] CHEN H C, KANAI M, INOUE-YAMAUCHI A, et al. An interconnected hierarchical model of cell death regulation by the BCL-2 family[J]. Nature Cell Biology, 2015, 17(10): 1270-1281. doi: 10.1038/ncb3236
    [13] 朵兴红, 姜萧韩, 周若琦, 等. 靶向多肽功能化阳离子聚合物携载ZNF580质粒对内皮细胞增殖的影响[J]. 华南师范大学学报(自然科学版), 2020, 52(3): 62-69. doi: 10.6054/j.jscnun.2020045

    DUO X H, JIANG X H, ZHOU R Q, et al. The effect of targeted polypeptide functionalized cationic polymer loaded with ZNF580 plasmid on proliferation of endothelial cells[J]. Journal of South China Normal University(Natural Science Edition), 2020, 52(3): 62-69. doi: 10.6054/j.jscnun.2020045
    [14] HE S, LIU P, JIAN Z, et al. miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/cjun pathway[J]. Biochemical and Biophysical Research Communications, 2013, 441(4): 763-769. doi: 10.1016/j.bbrc.2013.10.151
    [15] BOLAND K, FLANAGAN L, PREHN J H. Paracrine control of tissue regeneration and cell proliferation by Caspase-3[J]. Cell Death Disease, 2013, 4(7): 1-6. http://europepmc.org/articles/PMC3730423/
    [16] GUSTAFSSON A B, GOTTLIEB R A. Autophagy in ischemic heart disease[J]. Circulation Research, 2009, 104(2): 150-158. doi: 10.1161/CIRCRESAHA.108.187427
    [17] HU J, CUI W, DING W, et al. Globular adiponectin attenuated H2O2-induced apoptosis in rat chondrocytes by inducing autophagy through the AMPK/mTOR pathway[J]. Cellular Physiology and Biochemistry, 2017, 43(1): 367-382. doi: 10.1159/000480416
    [18] MARIN-GARCIA J, AKHMEDOV A T. Mitochondrial dynamics and cell death in heart failure[J]. Heart Failure Reviews, 2016, 21(2): 123-136. doi: 10.1007/s10741-016-9530-2
    [19] KANG R, ZEH H J, LOTZE M T, et al. The beclin-1 network regulates autophagy and apoptosis[J]. Cell Death and Differentiation, 2011, 18(4): 571-580. doi: 10.1038/cdd.2010.191
    [20] MIZUSHIMA N, YAMAMOTO A, MATSUI M, et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker[J]. Molecular Biology of the Cell, 2004, 15(3): 1101-1111. doi: 10.1091/mbc.e03-09-0704
    [21] LIN H H, CHEN J H, HUANG C C, et al. Apoptotic effect of 3, 4-dihydroxybenzoic acid on human gastric carcinoma cells involving JNK/p38 MAPK signaling activation[J]. International Journal of Cancer, 2007, 120(11): 2306-2316. doi: 10.1002/ijc.22571
    [22] KANAMORI H, TAKEMURA G, GOTO K, et al. Autophagy limits acute myocardial infarction induced by permannent coronary artery occlusion[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2011, 300(6): H2261-H2271. doi: 10.1152/ajpheart.01056.2010
    [23] HUANG C Q, YITZHAKI S, PERRY C N, et al. Autophagy induced by ischemic preconditioning is essential for cardipprotection[J]. Journal of Cardiovascular Translational Research, 2010, 3(4): 365-373. doi: 10.1007/s12265-010-9189-3
    [24] GURUSAMY N, LEKLI I, GORBUNOV N V, et al. Cardioprotection by adaptation to ischaemia augments autophagy in association with BAG-1protein[J]. Journal of Cellular and Molecular Medicine, 2009, 13(2): 373-387. doi: 10.1111/j.1582-4934.2008.00495.x
    [25] LIU J, HOU J, XIA Z Y, et al. Recombinant PTD-Cu/Zn SOD attenuates hypoxia-reoxygenation injury in cardiomyocytes[J]. Free Radical Research, 2013, 47(5): 386-393. doi: 10.3109/10715762.2013.780286
    [26] CAO J, MIAO Q, MIAO S, et al. Tetramethylpyrazine (TMP) exerts antitumor effects by inducing apoptosis and autophagy in hepatocellular carcinoma[J]. International Immunopharmacology, 2015, 26(1): 212-220. doi: 10.1016/j.intimp.2015.03.028
    [27] SUN Z W, ZHANG L, ZHU S J, et al. Excitotoxicity effects of glutamate on human neuroblastoma SH-SY5Y cells via oxidative damage[J]. Neuroscience Bulletin, 2010, 26(1): 8-16. doi: 10.1007/s12264-010-0813-7
    [28] WEBER N C, RIEDEMANN I, SMIT K F, et al. Plasma from human volunteers subjected to remote ischemic preconditioning protects human endothelial cells from hypoxia-induced cell damage[J]. Basic Research in Cardiology, 2015, 110(2): 1-17. doi: 10.1007/s00395-015-0464-y
    [29] AMANI M, JEDDI S, AHMADIASL N, et al. Effect of HEMADO on level of CK-MB and LDH enzymes after ischemia/reperfusion injury in isolated rat heart[J]. Bioimpacts, 2013, 3(2): 101-104. http://old.med.wanfangdata.com.cn/viewHTMLEn/PeriodicalPaper_PM23878794.aspx
    [30] ZHANG X D, LIANG X M, LIN X, et al. Mechanism of the protective effect of Yulangsan flavonoid on myocardial ischemia/reperfusion injury in rats[J]. Cellular Physiology and Biochemistry, 2014, 34(4): 1050-1062. doi: 10.1159/000366320
    [31] 蔡轶, 魏沁, 蔡跃鹏, 等. 表儿茶素没食子酸酯对人鼻咽癌C666-1细胞凋亡的影响[J]. 华南师范大学学报(自然科学版), 2015, 47(4): 103-107. doi: 10.6054/j.jscnun.2015.05.014

    CAI Y, WEI Q, CAI Y P, et al. Effect of epicatechin gallate on the apoptosis of human nasopharyngeal carcinoma Cell Line C666-1[J]. Journal of South China Normal University(Natural Science Edition), 2015, 47(4): 103-107. doi: 10.6054/j.jscnun.2015.05.014
  • 加载中
图(5)
计量
  • 文章访问数:  200
  • HTML全文浏览量:  60
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-28
  • 网络出版日期:  2021-04-29
  • 刊出日期:  2021-04-25

目录

    /

    返回文章
    返回