留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水样中5种氟喹诺酮的UPLC-QTOF法测定

李金玲 杨愿愿 刘思思 赵建亮 应光国 陈长二

李金玲, 杨愿愿, 刘思思, 赵建亮, 应光国, 陈长二. 水样中5种氟喹诺酮的UPLC-QTOF法测定[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 44-50. doi: 10.6054/j.jscnun.2021025
引用本文: 李金玲, 杨愿愿, 刘思思, 赵建亮, 应光国, 陈长二. 水样中5种氟喹诺酮的UPLC-QTOF法测定[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 44-50. doi: 10.6054/j.jscnun.2021025
LI Jinling, YANG Yuanyuan, LIU Sisi, ZHAO Jianliang, YING Guangguo, CHEN Changer. Determining Five Fluoroquinolone Antibiotics in Water Samples with the UPLC-QTOF Method[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(2): 44-50. doi: 10.6054/j.jscnun.2021025
Citation: LI Jinling, YANG Yuanyuan, LIU Sisi, ZHAO Jianliang, YING Guangguo, CHEN Changer. Determining Five Fluoroquinolone Antibiotics in Water Samples with the UPLC-QTOF Method[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(2): 44-50. doi: 10.6054/j.jscnun.2021025

水样中5种氟喹诺酮的UPLC-QTOF法测定

doi: 10.6054/j.jscnun.2021025
基金项目: 

国家自然科学基金项目 21806042

广州市科学研究计划一般项目 201904010291

华南师范大学青年教师科研培育基金项目 17KJ17

详细信息
    通讯作者:

    陈长二,Email: changer.chen@m.scnu.edu.cn

  • 中图分类号: X703

Determining Five Fluoroquinolone Antibiotics in Water Samples with the UPLC-QTOF Method

  • 摘要: 建立了环丙沙星、恩诺沙星、诺氟沙星、氧氟沙星和培氟沙星等5种氟喹诺酮类抗生素(FQs)的超高效液相色谱-四极杆飞行时间质谱(UPLC-QTOF)定量分析方法. 样品经Waters ACUITY UPLC BEH C18色谱柱分离,含0.1%甲酸(体积分数)的水溶液-甲醇为流动相进行梯度洗脱,电喷雾串联飞行时间质谱正离子模式扫描,分别在UPLC-QTOF的MS、MSE和多反应监测(MRM)模式进行检测,采用内标法定量,并与超高效液相色谱-三重四极杆质谱(UPLC-TQMS)的MRM模式进行比较研究. 结果表明:UPLC-QTOF测定的检出限为0.04~0.22 μg/L,定量限为0.17~0.90 μg/L,且在1~100 μg/L范围内,表现了良好的线性关系(R2≥0.99),该方法各项指标及环境样品应用与UPLC-TQMS法相当. 因此,UPLC-QTOF可对水环境样品中这5种FQs进行筛查和定量分析.
  • 图  1  不同流动相条件及柱温对环丙沙星色谱峰的影响

    Figure  1.  The effect of different mobile phases and column temperatures on chromatograms of CFX

    图  2  环丙沙星在UPLC-TQMS和UPLC-QTOF模式下定量离子的色谱图

    Figure  2.  The quantification ion chromatograms of CFX in the UPLC-QTOF and UPLC-TQMS modes

    表  1  不同FQs在UPLC-QTOF上的质谱采集参数

    Table  1.   The parameters of different FQs detection under UPLC-QTOF


    化合物
    m/z 锥孔电压/V
    碰撞能/eV
    理论值 测定值 偏差 子离子1 子离子2
    OFX 362.151 6 362.151 9 -0.3 318.161 3 261.103 7 40 20
    PFX 334.156 7 334.156 7 0.0 316.145 5 290.165 8 40 25
    CFX 332.141 0 332.141 1 -0.1 288.149 7 314.131 0 40 20
    NFX 320.141 0 320.140 9 0.1 302.130 4 230.957 0 40 20
    EFX 360.172 3 360.172 2 0.1 342.161 1 316.182 1 40 20
    CFX-D8(内标) 340.191 2 340.190 7 0.5 322.182 6 296.201 9 40 20
    下载: 导出CSV

    表  2  不同FQs在UPLC-TQMS上的质谱采集参数

    Table  2.   The parameters of different FQs detection under UPLC-TQMS

    化合物 母离子
    质荷比(m/z)
    子离子
    质荷比(m/z)
    锥孔
    电压/V
    碰撞能/
    eV
    NFX 320.1 276.1 32 20
    302.1 32 17
    CFX 332.1 288.1 32 18
    314.1 32 22
    PFX 334.2 290.2 40 20
    316.2 40 16
    EFX 360.2 316.1 32 22
    342.1 32 17
    OFX 362.2 261.2 54 26
    318.0 54 15
    CFX-D8(内标) 340.3 296.2 42 38
    235.2 42 17
    下载: 导出CSV

    表  3  5种FQs在UPLC-TQMS的定量限、检出限、线性范围、相关系数和数据量

    Table  3.   The limits of detection and quantification, linear range, correlation coefficient and data size for 5 FQs under UPLC-TQMS

    化合物 ρ线性范围/
    (μg·L-1)
    回归方程 相关系数 检出限/
    (μg·L-1)
    定量限/
    (μg·L-1)
    数据量/MB
    CFX 1~100 y=0.47x-0.50 0.992 0.10 0.41 0.77
    EFX 1~100 y=0.46x-0.06 0.999 0.23 0.92 0.77
    NFX 1~100 y=0.37x-0.48 0.990 0.09 0.38 0.77
    OFX 0.5~100 y=1.63x-0.17 0.995 0.08 0.32 0.77
    PFX 0.5~100 y=1.32x-0.40 0.999 0.10 0.39 0.77
    下载: 导出CSV

    表  4  5种FQs在UPLC-QTOF不同采集模式下的定量限、检出限、线性范围、相关系数和数据量

    Table  4.   The limits of detection and quantification, linear range, correlation coefficient, and data size of the 5 FQs in each mode of data acquisition under UPLC-QTOF

    化合物 采集模式 ρ线性范围/
    (μg·L-1)
    回归方程 相关系数 检出限/
    (μg·L-1)
    定量限/
    (μg·L-1)
    数据量/MB
    CFX MRM 0.5~100 y=1.87x-1.27 0.991 0.04 0.17 0.66
    MS 1~100 y=1.15x+0.22 0.993 0.14 0.58 166
    MSE 1~100 y=1.39x-1.90 0.991 0.07 0.27 320
    EFX MRM 1~100 y=1.05x-0.88 0.990 0.17 0.69 0.66
    MS 1~100 y=0.85x-0.18 0.993 0.13 0.50 166
    MSE 1~100 y=1.61x-1.38 0.990 0.18 0.74 320
    NFX MRM 1~100 y=0.94x-0.99 0.994 0.11 0.46 0.66
    MS 1~100 y=1.17x-0.50 0.991 0.11 0.43 166
    MSE 1~100 y=0.70x-0.94 0.991 0.21 0.82 320
    OFX MRM 0.5~100 y=3.06x-0.04 0.990 0.08 0.31 0.66
    MS 0.5~100 y=0.74x+0.08 0.991 0.07 0.29 166
    MSE 0.5~100 y=1.83x-0.78 0.996 0.06 0.25 320
    PFX MRM 0.5~100 y=1.92x-0.75 0.996 0.06 0.26 0.66
    MS 1~100 y=1.07x-0.02 0.992 0.10 0.42 166
    MSE 1~100 y=0.93x-0.81 0.992 0.22 0.90 320
    下载: 导出CSV

    表  5  UPLC-QTOF和UPLC-TQMS下5种FQs质量极度检测结果的精密度

    Table  5.   The precision of concentration detection for 5 FQs under UPLC-QTDF and UPLC-TQMS


    化合物
    ρ/(μg·L-1) RSD(UPLC-QTOF)/% RSD(UPLC-TQMS)/%
    MRM
    MRM MS MSE
    CFX 10 3.4 1.0 1.6 1.4
    50 1.8 1.8 1.4 2.9
    100 1.5 1.1 0.8 2.9
    EFX 10 2.8 3.8 2.2 2.2
    50 2.3 2.0 1.6 2.0
    100 2.5 2.1 0.7 1.2
    NFX 10 6.7 2.0 3.3 3.3
    50 4.3 2.3 8.0 1.8
    100 3.5 1.8 7.9 3.0
    OFX 10 2.7 4.8 1.7 2.5
    50 1.1 3.1 2.4 1.9
    100 1.1 0.8 1.1 2.2
    PFX 10 5.6 1.1 9.8 2.9
    50 0.5 1.6 9.6 2.4
    100 1.0 2.0 11.0 1.4
    下载: 导出CSV

    表  6  UPLC-QTOF和UPLC-TQMS对氧氟沙星质量浓度的测定

    Table  6.   The measured concentrations of OFX under UPLC-QTOF and UPLC-TQMS  ng/L(n=3)

    样品 ρ(UPLC-QTOF) ρ(UPLC-TQMS)
    MRM
    MRM MS MSE
    1 48.1±4.45 41.2±1.87 29.7±2.80 29.8±2.91
    2 20.2±0.49 21.5±0.73 14.0±1.07 14.6±0.44
    下载: 导出CSV
  • [1] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of china: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782. doi: 10.1021/acs.est.5b00729
    [2] ZHOU L J, YING G G, ZHAO J L, et al. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China[J]. Environmental Pollution, 2011, 159(7): 1877-1885. doi: 10.1016/j.envpol.2011.03.034
    [3] CARVALHO I T, SANTO S, LUCIA A. Antibiotics in the aquatic environments: a review of the European scenario[J]. Environment International, 2016(94): 736-757 http://www.sciencedirect.com/science/article/pii/s0160412016302434
    [4] 赵方凯, 杨磊, 乔敏, 等. 土壤中抗生素的环境行为及分布特征研究进展[J]. 土壤, 2017, 49(3): 428-436. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201703002.htm

    ZHAO F K, YANG L, QIAO M, et al. Environmental behavior and distribution and antibiotics in soils: a review[J]. Soils, 2017, 49(3): 428-436. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201703002.htm
    [5] 崔亚丰, 何江涛, 苏思慧, 等. 某市典型地段地表水及地下水中氟喹诺酮类抗生素分布特征[J]. 环境科学, 2015, 36(11): 4060-4067. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201511015.htm

    CUI Y F, HE J T, SU S H, et al. Distribution characteristics of fluoroquinolones antibiotics in surface water and groundwater from typical areas in a city[J]. Environmental Science, 2015, 36 (11): 4060-4067. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201511015.htm
    [6] 刘叶新, 周志洪, 区晖, 等. 珠江广州河段沉积物中典型抗生素的污染特征[J]. 华南师范大学学报(自然科学版), 2018, 50(4): 52-58. doi: 10.6054/j.jscnun.2018084

    LIU Y X, ZHOU Z H, OU H, et al. Occurrence of typical antibiotics in sediments of Guangzhou section of the Pearl River[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(4): 52-58. doi: 10.6054/j.jscnun.2018084
    [7] 何轮凯, 张敏, 刘有胜, 等. 长期施用粪肥的土壤中抗生素耐药基因的消减规律[J]. 华南师范大学学报(自然科学版), 2018, 50(1): 1-10. doi: 10.6054/j.jscnun.2018009

    HE L K, ZHANG M, LIU Y S, et al. Dynamic of antibiotics resistance genes in soil chronically fertilized by swine manure[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(1): 1-10. doi: 10.6054/j.jscnun.2018009
    [8] 周志洪, 赵建亮, 魏晓东, 等. 珠江广州段水体抗生素的复合污染特征及其生态风险[J]. 生态环境学报, 2017, 26(6): 1034-1041. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201706018.htm

    ZHOU Z H, ZHAO J L, WEI X D, et al. Co-occurrence and ecological risk of antibiotics in surface water of Guangzhou section of Pearl River[J]. Ecology and Environmental Sciences, 2017, 26(6): 1034-1041. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201706018.htm
    [9] ZHAO J L, LIU Y S, LIU W R, et al. Tissue-specific bioaccumulation of human and veterinary antibiotics in bile, plasma, liver and muscle tissues of wild fish from a highly urbanized region[J]. Environmental Pollution, 2015, 198: 15-24. doi: 10.1016/j.envpol.2014.12.026
    [10] 崔鹏. 水处理工艺中氟喹诺酮类物质分布的检测研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
    [11] 孟磊, 杨兵, 薛南冬. 氟喹诺酮类抗生素环境行为及其生态毒理研究进展[J]. 生态毒理学报, 2015, 10(2): 76-88. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201502009.htm

    MENG L, YANG B, XUE N D. A Review on environmental behaviors and ecotoxicology of fluoroquinolone antibiotics[J]. Journal of Ecotoxicology, 2015, 10(2): 76-88. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201502009.htm
    [12] 国彬, 姚丽贤, 何兆桓, 等. 高效液相色谱法测定畜禽废物中磺胺类、喹诺酮类抗生素[J]. 环境化学, 2011, 30(12): 2054-2059. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201112015.htm

    GUO B, YAO L X, HE Z H, et al. Determination of quinolone and sulfonamides antibiotics in animal waste by high performance liquid chromatography[J]. Environmental Chemistry, 2011, 30(12): 2054-2059. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201112015.htm
    [13] 陈静, 郑荣, 季申, 等. 超高效液相色谱法同时测定化妆品中的19种喹诺酮类抗生素[J]. 分析化学, 2013, 41(6): 931-935. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201306024.htm

    CHEN J, ZHENG R, JI S, et al. Determination of 19 quinolone antibiotics in cosmetics by ultra performance liquid chromatography[J]. Chinese Journal of Analytical Chemistry, 2013, 41(6): 931-935. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201306024.htm
    [14] 杨艳菲, 曹旭敏, 李雪莲, 等. 分子印迹固相萃取-超高效液相色谱-串联质谱法测定鸡肉中9种氟喹诺酮药物残留[J]. 色谱, 2016, 34(11): 1063-1069. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201611007.htm

    YANG Y F, CAO X M, LI X L, et al. Determination of nine fluoroquinolone residues in chicken by high performance liquid chromatography-tandem mass spectrometry coupled with molecularly imprinted solid phase extraction[J]. Chinese Journal of Chromatography, 2016, 34(11): 1063-1069. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201611007.htm
    [15] 赵娜, 梁嘉诚, 时丽艳, 等. QuEChERS-高效液相色谱-串联质谱法同时测定有机肥料中10种氟喹诺酮类药物残留[J]. 色谱, 2019, 37(3): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201903012.htm

    ZHAO N, LIANG J C, SHI L Y, et al. Simultaneous determination of ten fluoroquinolone residues in organic fertilizers by QuEChERS and high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2019, 37(3): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201903012.htm
    [16] 董恒涛, 姚劲挺, 郝红元, 等. 超高效液相色谱三重四极杆质谱联用法测定地表水中14种喹诺酮类抗生素残留[J]. 环境化学, 2018, 37(6): 261-264. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201806029.htm

    DONG H T, YAO J T, HAO H Y, et al. Determination of 14 quinolone antibiotic residues in surface water by high performance liquid chromatography with triple quadrupole mass spectrometry[J]. Environmental Chemistry, 2018, 37(6): 261-264. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201806029.htm
    [17] 程家兴, 赵起越, 李令军, 等. 固相萃取/超高效液相色谱-质谱法筛查及检测养鱼河水中抗生素[J]. 分析测试学报, 2018, 37(3): 275-281. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST201803003.htm

    CHENG J X, ZHAO Q Y, LI L J, et al. Screening and determination of antibiotics in fish pond water by ultra performance liquid chromatography-mass spectrometry with solid phase extraction[J]. Journal of Instrumental Analysis, 2018, 37(3): 275-281. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST201803003.htm
    [18] 郑晶, 黄晓蓉, 李耀平, 等. 鳗鱼中恩诺沙星残留量的酶联免疫检测方法[J]. 食品科学, 2004, 25(10): 247-250. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX200410068.htm

    ZHENG J, HUANG X R, LI Y P, et al. Determination of remained Enrofloxacin in Eel by ELISA[J]. Food Science, 2004, 25(10): 247-250. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX200410068.htm
    [19] 李建鲲, 俞成山, 刘冬梅, 等. 酶联免疫法测定肌肉中氟喹诺酮类药物效果探讨[J]. 食品安全质量检测学报, 2018, 9(13): 3263-3266. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ201813008.htm

    LI J K, YU C S, LIU D M, et al. Discussion on the effect of determination of fluoroquinolones in muscle by enzyme-linked immunosorbent assay[J]. Journal of Food Safety and Quality, 2018, 9(13): 3263-3266. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ201813008.htm
    [20] USEPA. Definition and procedure for the determination of the method detection limit, revision 2[S]. https://www.epa.gov/cwa-methods.
    [21] ZHOU L J, YING G G, LIU S, et al. Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Journal of Chromatography A, 2012, 1244: 123-138. http://europepmc.org/abstract/MED/22625208
    [22] 崔敬鑫, 石秋俊, 王国民, 等. 超高效液相色谱-串联质谱法同时测定环境水样中的15种抗生素[J]. 环境化学, 2020, 39(4): 1065-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202004023.htm

    CUI J X, SHI Q J, WANG G M, et al. Simultaneous determination of 15 antibiotics in environmental water samples by ultra performance liquid chromatography-tandem mass spectrometry[J]. Environmental Chemistry, 2020, 39(4): 1065-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202004023.htm
    [23] CHEN W, HUANG H, CHEN C E, et al. Simultaneous determination of 20 trace organic chemicals in waters by solid-phase extraction(SPE) with triple-quadrupole mass spectrometer(QqQ-MS) and hybrid quadrupole Orbitrap high resolution MS(Q-Orbitrap-HRMS)[J]. Chemosphere, 2016, 163: 99-107. http://www.ncbi.nlm.nih.gov/pubmed/27522181
  • 加载中
图(2) / 表(6)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  6
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-21
  • 网络出版日期:  2021-04-29
  • 刊出日期:  2021-04-25

目录

    /

    返回文章
    返回