留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硼酸盐对阻燃PP复合材料性能的影响

李臻 杨丽庭 李彦涛 黄文杰 叶晋纶 曾聪

李臻, 杨丽庭, 李彦涛, 黄文杰, 叶晋纶, 曾聪. 硼酸盐对阻燃PP复合材料性能的影响[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 35-43. doi: 10.6054/j.jscnun.2021024
引用本文: 李臻, 杨丽庭, 李彦涛, 黄文杰, 叶晋纶, 曾聪. 硼酸盐对阻燃PP复合材料性能的影响[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 35-43. doi: 10.6054/j.jscnun.2021024
LI Zhen, YANG Liting, LI Yantao, HUANG Wenjie, YE Jinlun, ZENG Cong. The Effect of Borate on the Properties of Flame-retardant PP Composites[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(2): 35-43. doi: 10.6054/j.jscnun.2021024
Citation: LI Zhen, YANG Liting, LI Yantao, HUANG Wenjie, YE Jinlun, ZENG Cong. The Effect of Borate on the Properties of Flame-retardant PP Composites[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(2): 35-43. doi: 10.6054/j.jscnun.2021024

硼酸盐对阻燃PP复合材料性能的影响

doi: 10.6054/j.jscnun.2021024
基金项目: 

广东省自然科学基金项目 2019A1515011389

广东省高等学校珠江学者岗位计划资助项目 2019

详细信息
    通讯作者:

    杨丽庭, Email: yanglt@scun.edu.cn

  • 中图分类号: TQ325.1+4

The Effect of Borate on the Properties of Flame-retardant PP Composites

  • 摘要: 采用熔融共混挤出法,制备了掺杂少量硬硼钙石(CB)或硼酸锌(ZB)的阻燃聚丙烯(PP)复合材料,研究了CB和ZB对填充蜜胺包覆聚磷酸铵(APP-102)、三聚氰胺氰尿酸盐(MCA)阻燃PP复合材料的燃烧性能、热稳定性、机械性能、熔融结晶性能的影响. 结果表明:少量CB或ZB(质量分数为2.0%)能有效提高阻燃PP复合材料的阻燃性能,极限氧指数(LOI)从25.7%分别提高到27.6%和27.7%,UL-49等级从V-2提升到V-0,热释放峰值(pHRR)和总放热量(HRR)有一定程度的降低; CB和ZB有效改善了阻燃PP复合材料的热稳定性,燃烧时硼元素在表面促进形成连续紧密的炭层; 少量CB或ZB的添加不仅没有劣化阻燃PP复合材料的机械性能,而且使拉伸模量、弯曲模量略有升高,同时提高了阻燃PP复合材料的结晶速率和结晶度. 因此,CB与ZB类似,可被应用于PP的协同阻燃工艺.
  • 图  1  阻燃剂的红外光谱

    Figure  1.  The FT-IR spectra of flame-retardant

    图  2  阻燃粉体的SEM图

    Figure  2.  The SEM images of flame-retardant powders

    图  3  不同填料及其质量分数对PP复合物阻燃性能的影响

    注: w(IFR)=28%.

    Figure  3.  The effect of different fillers and contents on flame retardancy of PP composites

    图  4  PP和阻燃PP复合物的燃烧性能曲线

    注:TSR表示单位面积(m2)的PP燃烧时产生的累积生烟总量(无量纲),用比消光面积(m2)计算, 不直接表示生烟量.

    Figure  4.  The combustion property curves of PP and flame-retardant PP composites

    图  5  阻燃PP复合物在锥形量热测试后的残余物照片

    Figure  5.  The digital photos of char from the flame-retardant PP composites after the cone calorimetric test

    图  6  CB和ZB质量分数对阻燃PP复合物的机械性能的影响

    注: w(IFR)=28.0%.

    Figure  6.  The effect of CB and ZB mass fraction on mechanical properties of flame-retardant PP composites

    图  7  CB和ZB对阻燃PP的DSC曲线的影响

    Figure  7.  The effects of CB and ZB on the DSC curves of flame-retardant PP composites

    表  1  PP及阻燃PP复合物的配方

    Table  1.   The formula of PP and flame-retardant PP composites %

    样品 w(PP) w(APP-102) w(MCA) w(CB) w(ZB)
    PP0 100.0 0 0 0 0
    PP1 72.0 18.7 9.3 0 0
    PP2 71.0 18.7 9.3 1.0 0
    PP3 70.0 18.7 9.3 2.0 0
    PP4 69.0 18.7 9.3 3.0 0
    PP5 67.0 18.7 9.3 5.0 0
    PP6 71.0 18.7 9.3 0 1.0
    PP7 70.0 18.7 9.3 0 2.0
    PP8 69.0 18.7 9.3 0 3.0
    PP9 67.0 18.7 9.3 0 5.0
    PP10 70.0 20.0 10.0 0 0
    PP11 70.0 22.5 7.5 0 0
    下载: 导出CSV

    表  2  PP和PP复合物的阻燃性能测试结果

    Table  2.   The flame retardancy of PP and PP composites

    样品 m(APP-102): m(MCA) w(粉体)/% LOI/% UL-94等级 是否熔滴
    PP0 0 18.0 NR
    PP1 2 28.0 25.7 V-2
    PP10 2 30.0 26.3 V-0
    PP11 3 30.0 26.0 V-0
    下载: 导出CSV

    表  3  阻燃PP复合物的锥形量热测试结果

    Table  3.   The results of cone calorimetric test of flame-retardant PP composites

    样品 TTI/s 第一个峰 第二个峰 THR/(MJ·m-2·kg-1) ML/%
    pHRR/(kW·m-2) t/s pHRR/(kW·m-2) t/s
    PP0 58 686.5 195 3 233 92.85
    PP1 19 195.6 135 176.2 570 2 490 87.25
    PP3 24 192.6 130 185.3 660 2 393 85.33
    PP7 25 216.1 140 271.5 490 2 383 85.27
    注:阻燃PP的HRR曲线存在2个峰.
    下载: 导出CSV

    表  4  阻燃粉体和阻燃PP复合物的热重测试结果

    Table  4.   The results of thermogravimetric test of flame-retardant powder and flame-retardant PP composites

    样品 T95%/℃ Tmax/℃ 残留率/%
    IFR 286.8 384.3 46.33
    IFR/CB 291.3 385.0 50.59
    IFR/ZB 290.8 384.6 51.13
    PP0 251.6 296.7 1.12
    PP1 268.0 357.4 0.91
    PP3 275.3 334.5 2.85
    PP7 266.1 340.7 2.89
    下载: 导出CSV

    表  5  部分阻燃PP复合物的机械性能

    Table  5.   The mechanical performance of some flame-retardant PP composites

    样品 拉伸强度/MPa 弯曲强度/MPa 冲击强度/(kJ/m2)
    PP0 40.22 ± 0.48 30.94 ± 0.62 10.50 ± 0.30
    PP1 35.04 ± 0.39 37.93 ± 0.19 11.06 ± 0.40
    PP3 33.18 ± 0.32 38.08 ± 0.35 10.46 ± 0.33
    PP7 33.66 ± 0.16 37.73 ± 0.27 10.44 ± 0.26
    PP10 34.24 ± 0.14 37.68 ± 0.26 11.18 ± 0.32
    PP11 33.94 ± 0.05 36.91 ± 0.44 10.75 ± 0.21
    下载: 导出CSV

    表  6  阻燃PP的结晶和熔融性能

    Table  6.   The crystallization and melting properties of flame-retardant PP composites

    样品 Tc/℃ ΔHc/(J·g-1) Tm/℃ ΔHm/(J·g-1) Xc/%
    PP0 115.8 112.20 163.5 117.00 56.52
    PP1 124.0 99.55 164.0 105.10 70.52
    PP2 125.5 94.39 164.3 100.10 68.11
    PP3 125.4 93.66 164.7 103.90 71.70
    PP4 126.2 90.39 163.7 102.30 71.62
    PP5 125.8 87.61 164.8 92.77 66.89
    PP6 124.4 94.43 165.0 98.97 67.34
    PP7 125.3 93.81 165.0 100.80 69.56
    PP8 125.6 92.09 165.6 99.35 69.55
    PP9 125.9 90.84 164.6 87.95 63.41
    PP10 124.4 92.19 165.3 98.54 68.01
    PP11 124.0 89.02 164.6 96.35 66.49
    下载: 导出CSV
  • [1] IRVINE D J, MCCLUSKEY J A, ROBINSON I M. Fire hazards and some common polymers[J]. Polymer Degradation and Stability, 2000, 67(3): 383-396. doi: 10.1016/S0141-3910(99)00127-5
    [2] LU S Y, HAMERTON I. Recent developments in the chemistry of halogen-free flame retardant polymers[J]. Progress in Polymer Science, 2002, 27(8): 1661-1712. doi: 10.1016/S0079-6700(02)00018-7
    [3] 张立飞, 柳军旺, 韩志东, 等. 氢氧化镁/可膨胀石墨/聚丙烯复合材料的热降解过程与燃烧行为[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 17-22. doi: 10.6054/j.jscnun.2019120

    ZHANG L F, LIU J W, HAN Z D, et al. Thermal degradation and combustion behavior of flame retardant polypropylene with expandable graphite and magnesium hydroxide[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(1): 17-22. doi: 10.6054/j.jscnun.2019120
    [4] 宋新铺, 陈仪权, 洪文彪, 等. 新型高分子型阻燃抗静电剂的合成及应用[J]. 华南师范大学学报(自然科学版), 2014, 43(5): 59-63. doi: 10.6064/j.jscnun.2014.06.042

    SONG X P, CHEN Y Q, HONG W B, et al. Synthesis and application of the new polymer flame retardant antistatic agent[J]. Journal of South China Normal University(Natural Science Edition), 2014, 43(5): 59-63. doi: 10.6064/j.jscnun.2014.06.042
    [5] VIK R. Zinc Borate as an alternative non-halogen flame retardant system in epoxy resins[J]. Chemicke Listy, 2010, 104(8): 798-802. http://www.researchgate.net/publication/286845693_Zinc_Borate_as_an_Alternative_Non-Halogen_Flame_Retardant_System_in_Epoxy_Resins
    [6] PAWLOWSKI K H, SCHARTEL B, FICHERA M A, et al. Flame retardancy mechanisms of bisphenol A bis(diphenyl phosphate) in combination with zinc borate in bisphenol A polycarbonate/acrylonitrile-butadiene-styrene blends[J]. Thermochimica Acta, 2010, 498(1/2): 92-99. http://www.sciencedirect.com/science/article/pii/S0040603109003645
    [7] YILDIZ B, SEYDIBEYOGLU M O, GUNER F S. Polyurethane-zinc borate composites with high oxidative stability and flame retardancy[J]. Polymer Degradation and Stability, 2009, 94(7): 1072-1075. doi: 10.1016/j.polymdegradstab.2009.04.006
    [8] DOGAN M, YILMAZ A, BAYRAMLI E. Synergistic effect of boron containing substances on flame retardancy and thermal stability of intumescent polypropylene composites[J]. Polymer Degradation and Stability, 2010, 95(12): 2584-2588. doi: 10.1016/j.polymdegradstab.2010.07.033
    [9] ORHAN T, ISITMAN N A, HACALOGLU J, et al. Thermal degradation mechanisms of aluminium phosphinate, melamine polyphosphate and zinc borate in poly(methyl methacrylate)[J]. Polymer Degradation and Stability, 2011, 96(10): 1780-1787. doi: 10.1016/j.polymdegradstab.2011.07.019
    [10] SHEN K K, KOCHESFAHANI S, FREDERIC J. Zinc borates as multifunctional polymer additives[J]. Polymers for Advanced Technologies, 2008, 19(6): 469-474. doi: 10.1002/pat.1119
    [11] WU Z, HU Y, SHU W. Effect of ultrafine zinc borate on the smoke suppression and toxicity reduction of a low-density polyethylene/intumescent flame-retardant system[J]. Journal of Applied Polymer Science, 2010, 117(1): 443-449. doi: 10.1002/app.31969
    [12] FENG C, ZHANG Y, LIANG D, et al. Influence of zinc borate on the flame retardancy and thermal stability of intumescent flame retardant polypropylene composites[J]. Journal of Analytical and Applied Pyrolysis, 2015, 115(1): 224-232. http://smartsearch.nstl.gov.cn/paper_detail.html?id=817f63e035490c0d58575969ef933b02
    [13] GUZEL G, SIVRIKAYA O, DEVECI H. The use of colemanite and ulexite as novel fillers in epoxy composites: influences on thermal and physico-mechanical properties[J]. Composites Part B: Engineering, 2016, 100(1): 1-9. http://smartsearch.nstl.gov.cn/paper_detail.html?id=f875a4111b73eb341f7f0bb6c3d67ebc
    [14] ATIKLER U, DEMIR H, TOKATLI F, et al. Optimisation of the effect of colemanite as a new synergistic agent in an intumescent system[J]. Polymer Degradation and Stability, 2005, 91(7): 1563-1570. http://www.sciencedirect.com/science/article/pii/S0141391005004404
    [15] KAYNAK C, ISITMAN N A. Synergistic fire retardancy of colemanite, a natural hydrated calcium borate, in high-impact polystyrene containing brominated epoxy and antimony oxide[J]. Polymer Degradation and Stability, 2011, 96(5): 798-807. doi: 10.1016/j.polymdegradstab.2011.02.011
    [16] FLORIAN C, AMANDINE V, BELKACEM O, et al. Influence of colemanite on the fire retardancy of ethylene-vinyl acetate and ethylene-methyl acrylate copolymers[J]. Polymer Degradation and Stability, 2017, 114(1): 401-410. http://www.sciencedirect.com/science/article/pii/S0141391017302483
    [17] 钱立军, 韩鑫磊, 叶志殷, 等. APP/MCA复合阻燃增强聚丙烯的研究[J]. 中国塑料, 2010, 24(5): 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSU201005034.htm

    QIAN L J, HAN X L, YE Z Y, et al. Research on polypropylene composites flame-retarded and reinforced by APP/MCA[J]. China Plastics, 2010, 24(5): 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSU201005034.htm
    [18] GAO D D, WEN X, GUAN Y Y, et al. Flame retardant effect and mechanism of nanosized NiO as synergist in PLA/APP/CSi-MCA composites[J]. Composites Communications, 2020, 17(1): 170-176. http://www.sciencedirect.com/science/article/pii/S2452213919301913
    [19] 方芳, 刘代俊, 陈建钧. 高聚合度聚磷酸铵的合成及表征[J]. 无机盐工业, 2014, 46(7): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG201407010.htm

    FANG F, LIU D J, CHEN J J. Synthesis and characterization of ammonium polyphosphate with high degree of polymerization[J]. Inorganic Chemicals Industry, 2014, 46(7): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG201407010.htm
    [20] 杨淑兰, 肖继君, 李彦涛, 等. 阻燃润滑剂三聚氰胺氰尿酸盐的合成[J]. 河北省科学院学报, 2000, 17(4): 219-223. https://www.cnki.com.cn/Article/CJFDTOTAL-HBKX200004006.htm

    YANG S L, XIAO J J, LI Y T, et al. The synthetic process the flame retardant and lubricant melamine cyanurate acid (MCA)[J]. Journal of the Hebei Academy of Sciences, 2000, 17(4): 219-223. https://www.cnki.com.cn/Article/CJFDTOTAL-HBKX200004006.htm
    [21] 陆湛泉, 姜向新, 陶四平, 等. 用锥形量热仪研究阻燃聚丙烯的燃烧行为[J]. 合成材料老化与应用, 2012, 41(3): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-HOCE201203011.htm

    LU Z Q, JIANG X X, TAO S P, et al. Study of different flame retardant polypropylene combustibility by using cone calorimeter[J]. Synthetic Materials Aging and Application, 2012, 41(3): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-HOCE201203011.htm
    [22] 姜艳峰, 安彦杰, 李瑞, 等. 成核剂对聚丙烯结晶行为的研究[J]. 中国塑料, 2017, 31(10): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSU201710007.htm

    JIANG Y F, AN Y J, LI R, et al. Effects of nucleating agents on crystallization behavior of polypropylene[J]. China Plastics, 2017, 31(10): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSU201710007.htm
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  72
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-27
  • 网络出版日期:  2021-04-29
  • 刊出日期:  2021-04-25

目录

    /

    返回文章
    返回