留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米SnOx的水热合成及其储锂电化学性能

赖海 林颖 陈希 方小敏 孙艳辉

赖海, 林颖, 陈希, 方小敏, 孙艳辉. 纳米SnOx的水热合成及其储锂电化学性能[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 21-28. doi: 10.6054/j.jscnun.2021022
引用本文: 赖海, 林颖, 陈希, 方小敏, 孙艳辉. 纳米SnOx的水热合成及其储锂电化学性能[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 21-28. doi: 10.6054/j.jscnun.2021022
LAI Hai, LIN Ying, CHEN Xi, FANG Xiaomin, SUN Yanhui. Hydrothermal Synthesis of Nano-SnOx and Its Electrochemical Performance for Lithium-ions Storage[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(2): 21-28. doi: 10.6054/j.jscnun.2021022
Citation: LAI Hai, LIN Ying, CHEN Xi, FANG Xiaomin, SUN Yanhui. Hydrothermal Synthesis of Nano-SnOx and Its Electrochemical Performance for Lithium-ions Storage[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(2): 21-28. doi: 10.6054/j.jscnun.2021022

纳米SnOx的水热合成及其储锂电化学性能

doi: 10.6054/j.jscnun.2021022
基金项目: 

国家自然科学基金项目 21773076

2019年广东省大学生创新创业训练计划项目 S201910574153

详细信息
    通讯作者:

    孙艳辉, Email: sunyanhui0102@163.com

  • 中图分类号: O646

Hydrothermal Synthesis of Nano-SnOx and Its Electrochemical Performance for Lithium-ions Storage

  • 摘要: 采用水热法在不同碱性条件下制备了不同形貌结构的SnO2和SnO纳米材料,研究了两类锡基氧化物作为锂离子电池负极材料的储锂性能. 结果表明: SnCl2·2H2O直接水热水解或在碱性较弱时生成SnO2,当碱性较强(pH>13)时则生成纳米SnO; 与SnO2相比,SnO因其特殊的交叉网状花簇结构,表现出较高的首次充电、放电容量(1 059、1 590 mAh/g,库伦效率66.6%)、循环稳定性(循环500次,可逆容量达315 mAh/g)和倍率稳定性(在2.0 A/g下的可逆容量达到548 mAh/g). 碱性越强,SnO2的循环稳定性和倍率稳定性越好,这归因于碱性越强生成的SnO2颗粒越小,增大了电解液与电极材料的接触面积,缩短了Li+的传输距离,提高了循环稳定性和倍率稳定性. 研究结果为寻找长寿命、高容量负极材料的应用提供了参考.
  • 图  1  不同c(NaOH)制备SnOx样品的XRD图谱

    注:0.375MNaOH-SnOxx为1~2,表示该材料由SnO和SnO2的混合物组成.

    Figure  1.  The XRD patterns of SnOx samples prepared with different c(NaOH)

    图  2  不同SnOx样品的SEM图

    Figure  2.  The SEM morphology of different SnOx samples

    图  3  不同SnOx样品的BET图

    Figure  3.  The BET plots of different SnOx samples

    图  4  0.225MNaOH-SnO2和0.525MNaOH-SnO的循环伏安曲线

    Figure  4.  The CV curves of 0.225MNaOH-SnO2 and 0.525MNaOH-SnO

    图  5  充放电曲线

    Figure  5.  The charge and discharge curves

    图  6  微分容量曲线

    Figure  6.  The differential capacity-potential curves

    图  7  不同SnOx样品的循环性能

    Figure  7.  The cycle performance of different SnOx samples

    图  8  不同SnOx样品的倍率性能

    Figure  8.  The rate performance of different SnOx samples

    图  9  0.225MNaOH-SnO2和0.525MNaOH-SnO电池循环前后的交流阻抗图

    Figure  9.  The EIS curves of 0.225MNaOH-SnO2 and 0.525MNaOH-SnO before and after cycling

  • [1] HASSOUN J, LEE K S, SUN Y K, et al. An advanced lithium ion battery based on high performance electrode materials[J]. Journal of the American Chemical Society, 2011, 133(9): 3139-43. doi: 10.1021/ja110522x
    [2] ZHAO Y, LI X, YAN B, et al. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries[J]. Advanced Energy Materials, 2016, 6(8): 1-19. doi: 10.1002/aenm.201502175
    [3] 黄钊文, 李亚军, 肖文平, 等. 锂离子电池核壳G@Cu0.85Sn0.15@C负极材料的改性[J]. 华南师范大学学报(自然科学版), 2017, 49(3): 26-31. http://journal-n.scnu.edu.cn/article/id/3936

    HUANG Z W, LI Y J, XIAO W P, et al. Modification of core-shell G@Cu0.85Sn0.15@C anode materials for lithium ion batteries[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(3): 26-31. http://journal-n.scnu.edu.cn/article/id/3936
    [4] 陈素素, 陈新丽, 邓洪. SnO2@C锂离子电池负极材料的制备及其性能[J]. 华南师范大学学报(自然科学版), 2017, 49(2): 11-15. doi: 10.6054/j.jscnun.2017086

    CHEN S S, CHEN X L, DENG H. Preparation and application of SnO2@C as anode material in lithium ion batteries[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(2): 11-15. doi: 10.6054/j.jscnun.2017086
    [5] YAO J, SHEN X, WANG B, et al. In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries[J]. Electrochemistry Communications, 2009, 11(10): 1849-1852. doi: 10.1016/j.elecom.2009.07.035
    [6] ZHAO N H, YANG L C, ZHANG P, et al. Polycrystal line SnO2 nanowires coated with amorphous carbon nanotubes as anode material for lithium ion batteries[J]. Material Letters, 2010, 64: 972-975. doi: 10.1016/j.matlet.2010.01.077
    [7] 成志博, 侯贤华, 邹小丽, 等. 锂离子电池Sn-Co/C负极材料的制备与性能[J]. 华南师范大学学报(自然科学版), 2013, 45(5): 55-58. http://journal-n.scnu.edu.cn/article/id/3219

    CHEN Z B, HOU X H, ZOU X L, et al. Preparation and performance of Sn-Co/C alloy anode materials for lithium-ion battery[J]. Journal of South China Normal University (Natural Science Edition), 2013, 45(5): 55-58. http://journal-n.scnu.edu.cn/article/id/3219
    [8] HABTE A G, HONE F G, DEJENE F B. Zn doping effect on the properties of SnO2 nanostructure by co-precipitation technique[J]. Applied Physics A, 2019, 125(6): 402-411. doi: 10.1007/s00339-019-2695-5
    [9] SUN Y H, DONG P P, LANG X, et al. Comparative study of electrochemical performance of SnO2 anodes with different nanostructures for lithium-ion batteries[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(8): 5880-5888. doi: 10.1166/jnn.2015.10282
    [10] FU M S, NI L, DU N. Self-templated porous hierarchical SnO2 ceramics with enhanced lithium storage capacity[J]. Journal of Alloys and Compounds, 2014, 591: 65-71. doi: 10.1016/j.jallcom.2013.12.177
    [11] PARK G D, KANG Y C. Rational design and synthesis of hierarchically structured SnO2 microspheres assembled from hollow porous nanoplates as superior anode materials for lithium-ion batteries[J]. Nano Research, 2018, 11(3): 1301-1312. doi: 10.1007/s12274-017-1744-7
    [12] CHEN H, LU Y, ZHU H, et al. Crystalline SnO2@amorphous TiO2 core-shell nanostructures for high-performance lithium ion batteries[J]. Electrochimica Acta, 2019, 310: 203-212. doi: 10.1016/j.electacta.2019.04.134
    [13] AZIZ M, ABBAS S S, BAHAROM W R W, et al. Structure of SnO2 nanoparticles by sol-gel method[J]. Materials Letters, 2012, 74: 62-64. doi: 10.1016/j.matlet.2012.01.073
    [14] IVANOVSKAY M, OVODOK E, GOLOVANOV V. The nature of paramagnetic defects in tin(Ⅳ) oxide[J]. Chemical Physics, 2015, 457: 98-105. doi: 10.1016/j.chemphys.2015.05.023
    [15] SUN Y H, DONG P P, LANG X, et al. A novel rose flower-like SnO hierarchical structure synthesized by a hydrothermal method in an ethanol/water system[J]. Chinese Chemical Letters, 2014, 25(6): 915-918. doi: 10.1016/j.cclet.2014.04.013
    [16] BARANEEDHARAN P, HUSSAIN S I, DINESH V P, et al. Lattice doped Zn-SnO2 nanospheres: a systematic exploration of dopant ion effects on structural, optical, and enhanced gas sensing properties[J]. Applied Surface Sience, 2015, 357: 1511-1521. doi: 10.1016/j.apsusc.2015.09.257
    [17] XU X F, ZHANG H Y, CHEN Y M, et al. SiO2@SnO2/graphene composite with a coating and hierarchical structure as high performance anode material for lithium ion battery[J]. Journal of Alloys and Compounds, 2016, 677: 237-244. doi: 10.1016/j.jallcom.2016.03.136
    [18] JIA R, YUE J, XIA Q, et al. Carbon shelled porous SnO2-δ nanosheet arrays as advanced anodes for lithium-ion batteries[J]. Energy Storage Materials, 2018, 13: 303-311. doi: 10.1016/j.ensm.2018.02.009
    [19] LIAN P C, ZHU X F, LIANG S Z, et al. High reversible capacity of SnO2/Graphene nanocomposite as an anode material for lithium-ion batteries[J]. Electrochimica Acta, 2011, 56(12): 4532-4539. doi: 10.1016/j.electacta.2011.01.126
    [20] WANG M, YANG H, ZHOU X, et al. Rational design of SnO2@C nanocomposites for lithium ion batteries by utilizing adsorption properties of MOFs[J]. Chemical Communications, 2016, 52(4): 717-720. doi: 10.1039/C5CC07983G
    [21] SUN X. Morphosynthesis of SnO2 nanocrystal networks as high-capacity anodes for lithium ion batteries[J]. Ionics, 2020, 26(8): 3841-3851. doi: 10.1007/s11581-020-03552-2
    [22] JIANG P, JING J, WANG Y, et al. Facilely transforming bulk materials to SnO/pristine graphene 2D-2D heterostructures for stable and fast lithium storage[J]. Journal of Alloys and Compounds, 2020, 812: 152114/1-8. doi: 10.1016/j.jallcom.2019.152114
    [23] XIANG A, JIANG J, RUAN Y, et al. Honeycomb-inspired design of ultrafine SnO2@C nanospheres embedded in carbon film as anode materials for high performance lithium- and sodium-ion battery[J]. Journal of Power Sources, 2017, 359: 340-348. doi: 10.1016/j.jpowsour.2017.05.064
  • 加载中
图(9)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  56
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-31
  • 网络出版日期:  2021-04-29
  • 刊出日期:  2021-04-25

目录

    /

    返回文章
    返回