[1] |
HASSOUN J, LEE K S, SUN Y K, et al. An advanced lithium ion battery based on high performance electrode materials[J]. Journal of the American Chemical Society, 2011, 133(9): 3139-43. doi: 10.1021/ja110522x
|
[2] |
ZHAO Y, LI X, YAN B, et al. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries[J]. Advanced Energy Materials, 2016, 6(8): 1-19. doi: 10.1002/aenm.201502175
|
[3] |
黄钊文, 李亚军, 肖文平, 等. 锂离子电池核壳G@Cu0.85Sn0.15@C负极材料的改性[J]. 华南师范大学学报(自然科学版), 2017, 49(3): 26-31. http://journal-n.scnu.edu.cn/article/id/3936HUANG Z W, LI Y J, XIAO W P, et al. Modification of core-shell G@Cu0.85Sn0.15@C anode materials for lithium ion batteries[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(3): 26-31. http://journal-n.scnu.edu.cn/article/id/3936
|
[4] |
陈素素, 陈新丽, 邓洪. SnO2@C锂离子电池负极材料的制备及其性能[J]. 华南师范大学学报(自然科学版), 2017, 49(2): 11-15. doi: 10.6054/j.jscnun.2017086CHEN S S, CHEN X L, DENG H. Preparation and application of SnO2@C as anode material in lithium ion batteries[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(2): 11-15. doi: 10.6054/j.jscnun.2017086
|
[5] |
YAO J, SHEN X, WANG B, et al. In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries[J]. Electrochemistry Communications, 2009, 11(10): 1849-1852. doi: 10.1016/j.elecom.2009.07.035
|
[6] |
ZHAO N H, YANG L C, ZHANG P, et al. Polycrystal line SnO2 nanowires coated with amorphous carbon nanotubes as anode material for lithium ion batteries[J]. Material Letters, 2010, 64: 972-975. doi: 10.1016/j.matlet.2010.01.077
|
[7] |
成志博, 侯贤华, 邹小丽, 等. 锂离子电池Sn-Co/C负极材料的制备与性能[J]. 华南师范大学学报(自然科学版), 2013, 45(5): 55-58. http://journal-n.scnu.edu.cn/article/id/3219CHEN Z B, HOU X H, ZOU X L, et al. Preparation and performance of Sn-Co/C alloy anode materials for lithium-ion battery[J]. Journal of South China Normal University (Natural Science Edition), 2013, 45(5): 55-58. http://journal-n.scnu.edu.cn/article/id/3219
|
[8] |
HABTE A G, HONE F G, DEJENE F B. Zn doping effect on the properties of SnO2 nanostructure by co-precipitation technique[J]. Applied Physics A, 2019, 125(6): 402-411. doi: 10.1007/s00339-019-2695-5
|
[9] |
SUN Y H, DONG P P, LANG X, et al. Comparative study of electrochemical performance of SnO2 anodes with different nanostructures for lithium-ion batteries[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(8): 5880-5888. doi: 10.1166/jnn.2015.10282
|
[10] |
FU M S, NI L, DU N. Self-templated porous hierarchical SnO2 ceramics with enhanced lithium storage capacity[J]. Journal of Alloys and Compounds, 2014, 591: 65-71. doi: 10.1016/j.jallcom.2013.12.177
|
[11] |
PARK G D, KANG Y C. Rational design and synthesis of hierarchically structured SnO2 microspheres assembled from hollow porous nanoplates as superior anode materials for lithium-ion batteries[J]. Nano Research, 2018, 11(3): 1301-1312. doi: 10.1007/s12274-017-1744-7
|
[12] |
CHEN H, LU Y, ZHU H, et al. Crystalline SnO2@amorphous TiO2 core-shell nanostructures for high-performance lithium ion batteries[J]. Electrochimica Acta, 2019, 310: 203-212. doi: 10.1016/j.electacta.2019.04.134
|
[13] |
AZIZ M, ABBAS S S, BAHAROM W R W, et al. Structure of SnO2 nanoparticles by sol-gel method[J]. Materials Letters, 2012, 74: 62-64. doi: 10.1016/j.matlet.2012.01.073
|
[14] |
IVANOVSKAY M, OVODOK E, GOLOVANOV V. The nature of paramagnetic defects in tin(Ⅳ) oxide[J]. Chemical Physics, 2015, 457: 98-105. doi: 10.1016/j.chemphys.2015.05.023
|
[15] |
SUN Y H, DONG P P, LANG X, et al. A novel rose flower-like SnO hierarchical structure synthesized by a hydrothermal method in an ethanol/water system[J]. Chinese Chemical Letters, 2014, 25(6): 915-918. doi: 10.1016/j.cclet.2014.04.013
|
[16] |
BARANEEDHARAN P, HUSSAIN S I, DINESH V P, et al. Lattice doped Zn-SnO2 nanospheres: a systematic exploration of dopant ion effects on structural, optical, and enhanced gas sensing properties[J]. Applied Surface Sience, 2015, 357: 1511-1521. doi: 10.1016/j.apsusc.2015.09.257
|
[17] |
XU X F, ZHANG H Y, CHEN Y M, et al. SiO2@SnO2/graphene composite with a coating and hierarchical structure as high performance anode material for lithium ion battery[J]. Journal of Alloys and Compounds, 2016, 677: 237-244. doi: 10.1016/j.jallcom.2016.03.136
|
[18] |
JIA R, YUE J, XIA Q, et al. Carbon shelled porous SnO2-δ nanosheet arrays as advanced anodes for lithium-ion batteries[J]. Energy Storage Materials, 2018, 13: 303-311. doi: 10.1016/j.ensm.2018.02.009
|
[19] |
LIAN P C, ZHU X F, LIANG S Z, et al. High reversible capacity of SnO2/Graphene nanocomposite as an anode material for lithium-ion batteries[J]. Electrochimica Acta, 2011, 56(12): 4532-4539. doi: 10.1016/j.electacta.2011.01.126
|
[20] |
WANG M, YANG H, ZHOU X, et al. Rational design of SnO2@C nanocomposites for lithium ion batteries by utilizing adsorption properties of MOFs[J]. Chemical Communications, 2016, 52(4): 717-720. doi: 10.1039/C5CC07983G
|
[21] |
SUN X. Morphosynthesis of SnO2 nanocrystal networks as high-capacity anodes for lithium ion batteries[J]. Ionics, 2020, 26(8): 3841-3851. doi: 10.1007/s11581-020-03552-2
|
[22] |
JIANG P, JING J, WANG Y, et al. Facilely transforming bulk materials to SnO/pristine graphene 2D-2D heterostructures for stable and fast lithium storage[J]. Journal of Alloys and Compounds, 2020, 812: 152114/1-8. doi: 10.1016/j.jallcom.2019.152114
|
[23] |
XIANG A, JIANG J, RUAN Y, et al. Honeycomb-inspired design of ultrafine SnO2@C nanospheres embedded in carbon film as anode materials for high performance lithium- and sodium-ion battery[J]. Journal of Power Sources, 2017, 359: 340-348. doi: 10.1016/j.jpowsour.2017.05.064
|