留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫化螯合秸秆纤维吸附水体中Cd(Ⅱ)行为的DFT计算

郑刘春 张涛 孟佩佩 章莉娟

郑刘春, 张涛, 孟佩佩, 章莉娟. 硫化螯合秸秆纤维吸附水体中Cd(Ⅱ)行为的DFT计算[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 13-20. doi: 10.6054/j.jscnun.2021021
引用本文: 郑刘春, 张涛, 孟佩佩, 章莉娟. 硫化螯合秸秆纤维吸附水体中Cd(Ⅱ)行为的DFT计算[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 13-20. doi: 10.6054/j.jscnun.2021021
ZHENG Liuchun, ZHANG Tao, MENG Peipei, ZHANG Lijuan. The DFT Calculation of Cd(Ⅱ) Adsorption on Sulfur-chelating-based Straw Cellulose[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(2): 13-20. doi: 10.6054/j.jscnun.2021021
Citation: ZHENG Liuchun, ZHANG Tao, MENG Peipei, ZHANG Lijuan. The DFT Calculation of Cd(Ⅱ) Adsorption on Sulfur-chelating-based Straw Cellulose[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(2): 13-20. doi: 10.6054/j.jscnun.2021021

硫化螯合秸秆纤维吸附水体中Cd(Ⅱ)行为的DFT计算

doi: 10.6054/j.jscnun.2021021
基金项目: 

国家自然科学基金项目 51508206

广东省重点领域研发计划项目 2019B110207001

广州市民生科技攻关计划项目 201803030001

详细信息
    通讯作者:

    郑刘春, Email: zhengliuchun@scnu.edu.cn

  • 中图分类号: O641.12

The DFT Calculation of Cd(Ⅱ) Adsorption on Sulfur-chelating-based Straw Cellulose

  • 摘要: 针对硫化秸秆纤维材料(TMCS)的定量吸附机理进行扩展性研究. 结果表明:前线轨道与量子化学反应活性指数显示TMCS的 6226 分子结构与其他可能的分子结构相比,具有最强的亲核能力,被判定是最主要的吸附结构. 在该结构中,通过对Fukui函数、静电势、Mulliken电荷和吸附能的计算,表明-C(NH2)=S中的S原子和-N-/=N—H中的N原子在吸附Cd(Ⅱ)过程中起主要作用. 文章从多角度定量阐述了螯合纤维吸附理论的研究,对纤维的修饰设计具有指导意义.
  • 图  1  TMCS的吸附结构类型

    Figure  1.  The types of TMCS structures

    图  2  6226分子结构模型及各原子编号

    Figure  2.  The model of 6226 molecule and its atom numbering

    图  3  6226分子结构模型的静电势

    Figure  3.  The molecular electrostatic potential of the 6226 molecule structure model

    图  4  6226分子的部分N、O和S的电势(上)和差分电荷(下)密度图

    Figure  4.  The electron density (top) and differential charge density(bottom) of part of N, O and S in the 6226 molecule

    表  1  不同TMCS分子和Cd2+的量子化学反应活性指数

    Table  1.   The quantum chemical descriptors of Cd2+ and different TMCS structures eV

    物质 EHOMO ELUMO Eg1 Eg2 I A μ η χ ω
    3663 -4.797 -2.155 -3.32 16.65 4.797 2.155 -3.476 1.321 3.476 4.574
    2663 -4.876 -1.970 -3.24 15.56 4.876 1.970 -3.423 1.453 3.423 4.032
    2662 -4.623 -1.992 -3.51 15.29 4.623 1.992 -3.308 1.316 3.308 4.158
    6336 -4.672 -1.722 -3.46 15.35 4.672 1.722 -3.197 1.475 3.197 3.466
    6226 -4.248 -1.499 -3.87 14.91 4.248 1.499 -2.874 1.374 2.874 3.004
    6236 -4.430 -1.869 -3.70 15.10 4.430 1.869 -3.150 1.280 3.150 3.874
    6262 -4.710 -1.823 -3.40 15.37 4.710 1.823 -3.267 1.444 3.267 3.696
    6263 -4.335 -2.234 -3.78 15.02 4.335 2.234 -3.284 1.050 3.284 5.135
    6363 -4.237 -2.226 -3.89 14.91 4.237 2.226 -3.231 1.005 3.231 5.192
    6362 -4.280 -1.976 -3.84 14.97 4.280 1.976 -3.128 1.152 3.128 4.245
    Cd2+ -18.800 -8.125 18.800 8.125 -13.463 5.338 13.463 16.979
    下载: 导出CSV

    表  2  6226结构中N、O和S的Fukui函数值与Mulliken电荷数的变化

    Table  2.   The Mulliken charge and Fukui function value of N, O and S in the 6226 molecule

    参数 N11 N33 N36 N39 N42 N43 N64 O6 O7 O26 O30 S10 S63
    电荷/e -0.291 -0.370 -0.480 -0.391 -0.590 -0.553 -0.301 -0.504 -0.505 -0.538 -0.589 -0.577 -0.617
    fA- 0.028 0.018 0.036 0.015 0.029 0.020 0.028 0.005 0.003 0.005 0.003 0.209 0.206
    fA0 0.043 0.010 0.020 0.009 0.017 0.012 0.045 0.004 0.003 0.004 0.003 0.198 0.204
    fA+ 0.057 0.002 0.005 0.002 0.005 0.003 0.061 0.002 0.003 0.002 0.003 0.188 0.203
    下载: 导出CSV
  • [1] 郑刘春, 党志, 曹威, 等. 基于改性农业废弃物的矿山废水中重金属吸附去除技术及应用[J]. 华南师范大学学报(自然科学版), 2015, 47(1): 1-12. doi: 10.6054/j.jscnun.2014.12.003

    ZHENG L C, DANG Z, CAO W, et al. Modified agricultural residue used for removal of heavy metals from mine drainage: technologies and applications[J]. Journal of South China Normal University(Natural Science Edition), 2015, 47(1): 1-12. doi: 10.6054/j.jscnun.2014.12.003
    [2] 王冠, 方战强, 成文, 等. 改性沸石对诺氟沙星的吸附行为及机理[J]. 华南师范大学学报(自然科学版), 2018, 50(3): 41-50. doi: 10.6054/j.jscnun.2018040

    WANG G, FANG Z Q, CHENG W, et al. Adsorption behavior and mechanism of norfloxacin by modified zeolite[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(3): 41-50. doi: 10.6054/j.jscnun.2018040
    [3] 孙志勇, 成文, 方战强. 纳米氧化铝吸附溶液中Cr(Ⅵ)的研究[J]. 华南师范大学学报(自然科学版), 2014, 46(2): 79-85. http://journal-n.scnu.edu.cn/article/id/3116

    SUN Z Y, CHENG W, FANG Z Q. Adsorption of hexavalent chromium by nano-alumina particles[J]. Journal of South China Normal University(Natural Science Edition), 2014, 46(2): 79-85. http://journal-n.scnu.edu.cn/article/id/3116
    [4] WU Q, XU J, WU Z, et al. The effect of surface modification on chemical and crystalline structure of the cellulose Ⅲ nanocrystals[J]. Carbohydrate Polymers, 2020, 235: 115962/1-8. doi: 10.1016/j.carbpol.2020.115962
    [5] ZHENG L, PENG D, MENG P. Promotion effects of nitrogenous and oxygenic functional groups on cadmium(Ⅱ) removal by carboxylated corn stalk[J]. Journal of Cleaner Production, 2018, 201: 609-623. doi: 10.1016/j.jclepro.2018.08.070
    [6] ZHENG L, YANG Y, MENG P, et al. Absorption of cadmium(Ⅱ) via sulfur-chelating based cellulose: characterization, isotherm models and their error analysis[J]. Carbohydrate Polymers, 2019, 209: 38-50. doi: 10.1016/j.carbpol.2019.01.012
    [7] YANG Y, ZHENG L, ZHANG T, et al. Adsorption behavior and mechanism of sulfonamides on phosphonic chelating cellulose under different pH effects[J]. Bioresource Technology, 2019, 288: 121510/1-9. doi: 10.1016/j.biortech.2019.121510
    [8] CHEN Q, ZHENG J, WEN L, et al. A multi-functional-group modified cellulose for enhanced heavy metal cadmium adsorption: performance and quantum chemical mechanism[J]. Chemosphere, 2019, 224: 509-518. doi: 10.1016/j.chemosphere.2019.02.138
    [9] 桂岚岚, 彭亮, 彭导灵, 等. 密度泛函理论研究CO、CO+H在Ni(111)表面的吸附[J]. 华南师范大学学报(自然科学版), 2016, 48(1): 67-73. http://journal-n.scnu.edu.cn/article/id/3515

    GUI L L, PENG L, PENG D L, et al. Density functional theory study of CO, CO+H adsorption on Ni(111) surface[J]. Journal of South China Normal University(Natural Science Edition), 2016, 48(1): 67-73. http://journal-n.scnu.edu.cn/article/id/3515
    [10] ASADI-OJAEE S S, MIRABI A, RAD A S, et al. Removal of Bismuth(Ⅲ) ions from water solution using a cellulose-based nanocomposite: a detailed study by DFT and experimental insights[J]. Journal of Molecular Liquid, 2019, 295: 111723/1-12. doi: 10.1016/j.molliq.2019.111723
    [11] CHEN Q, ZHENG J, ZHENG L, et al. Classical theory and electron-scale view of exceptional Cd(Ⅱ) adsorption onto mesoporous cellulose biochar via experimental analysis coupled with DFT calculations[J]. Chemical Engineering Journal, 2018, 350: 1000-1009. doi: 10.1016/j.cej.2018.06.054
    [12] CHEN Q, TANG Z, LI H, et al. An electron-scale comparative study on the adsorption of six divalent heavy metal cations on MnFe2O4@CAC hybrid: experimental and DFT investigations[J]. Chemical Engineering Journal, 2020, 381: 122656/1-12. doi: 10.1016/j.cej.2019.122656
    [13] ZHANG R, LING L, LI Z, et al. Solvent effects on Cu2O(111) surface properties and CO adsorption on Cu2O(111) surface: a DFT study[J]. Applied Catalysis A: General, 2011, 400(1): 142-147. http://www.sciencedirect.com/science/article/pii/S0926860X11002432
    [14] PENG L, GAO Z, FENG H, et al. Cellulose based materials for controlled release formulations of agrochemicals: a review of modifications and applications[J]. Journal of Controlled Release, 2019, 316: 105-115. doi: 10.1016/j.jconrel.2019.11.004
    [15] KHALIL H P S A, NHAT A H, YUSRA A F I. Green composites from sustainable cellulose nanofibrils: a review[J]. Carbohydrate Polymers, 2012, 87: 963-979. doi: 10.1016/j.carbpol.2011.08.078
    [16] KHODAYARI A, VUURE A W V, HIRN U, et al. Tensile behaviour of dislocated/crystalline cellulose fibrils at the nano scale[J]. Carbohydrate Polymers, 2020, 235: 115946/1-9. doi: 10.1016/j.carbpol.2020.115946
    [17] O'CONNELL D W, BIRKINSHAW C, O'DWYER T F. Heavy metal adsorbents prepared from the modification of cellulose: a review[J]. Bioresource Technology, 2008, 99(15): 6709-6724. doi: 10.1016/j.biortech.2008.01.036
    [18] LINDH E L, BERGENSTRÅHLE-WOHLERT M, TERENZI C, et al. Non-exchanging hydroxyl groups on the surface of cellulose fibrils: the role of interaction with water[J]. Carbohydrate Research, 2016, 434: 136-142. doi: 10.1016/j.carres.2016.09.006
    [19] CHEN Q, ZHANG J, XU J, et al. Insights into sulfamethazine adsorption interfacial interaction mechanism on mesoporous cellulose biochar: coupling DFT/FOT simulations with experiments[J]. Chemical Engineering Journal, 2019, 356: 341-349. doi: 10.1016/j.cej.2018.09.055
    [20] REGTI A, AYOUCHIA H B E, LAAMARI M R, et al. Experimental and theoretical study using DFT method for the competitive adsorption of two cationic dyes from waste-waters[J]. Applied Surface Science, 2016, 390: 311-319. doi: 10.1016/j.apsusc.2016.08.059
    [21] YAO Z, WU H, LI Y, et al. Dithienopicenocarbazole as the kernel module of low-energy-gap organic dyes for efficient conversion of sunlight to electricity[J]. Energy & Environmental Science, 2015, 8(11): 3192-3197. http://www.irgrid.ac.cn/handle/1471x/1037373?mode=full&submit_simple=Show+full+item+record
    [22] THOMAS E, VIJAYALAKSHMI K P, GEORGE B K. Kinetic stability of imidazolium cations and ionic liquids: a frontier molecular orbital approach[J]. Journal of Molecular Liquid, 2019, 276: 721-727. doi: 10.1016/j.molliq.2018.12.034
    [23] RAKHSHI M, MOHSENNIA M, RASA H, et al. First-principle study of ammonia molecules adsorption on boron nitride nanotubes in presence and absence of static electric field and ion field[J]. Vacuum, 2018, 155: 456-464. doi: 10.1016/j.vacuum.2018.06.047
    [24] WANG X, YANG S, SHI W, et al. Different interaction mechanisms of Eu(Ⅲ) and 243Am(Ⅲ) with carbon nanotubes studied by batch, spectroscopy technique and theoretical calculation[J]. Environmental Science and Technology, 2015, 49(19): 11721-11728. doi: 10.1021/acs.est.5b02679
    [25] ABDULAZEEZ I, KHALED M, SAADI-AI A A. Impact of electron-withdrawing and electron-donating substituents on the corrosion inhibitive properties of benzimidazole derivatives: a quantum chemical study[J]. Journal of Molecular Structure, 2019, 1196: 348-355. doi: 10.1016/j.molstruc.2019.06.082
    [26] LOTFI M, MORSALI A, BOZORGMEHR M R. Comprehensive quantum chemical insight into the mechanistic understanding of the surface functionalization of carbon nanotube as a nanocarrier with cladribine anticancer drug[J]. Applied Surface Science, 2018, 462: 720-729. doi: 10.1016/j.apsusc.2018.08.151
    [27] HO T L, HO H C, HAMILTON L D. Biochemical significance of the hard and soft acids and bases principle[J]. Chemico-Biological Interactions, 1978, 23(1): 65-84. doi: 10.1016/0009-2797(78)90042-X
    [28] 王进贤, 刘占祥, 胡雨来. 酸碱软硬度的新标度研究[J]. 西北师范大学学报(自然科学版), 2001, 37(2): 95-99. doi: 10.3969/j.issn.1001-988X.2001.02.022

    WANG J X, LIU Z X, HU Y L. Study on the new scale of hardness-softness for Lewis acid and bases[J]. Journal of Northwest Normal University(Nature Science Edition), 2001, 37(2): 95-99. doi: 10.3969/j.issn.1001-988X.2001.02.022
    [29] YU M, LI Z, XIA Q, et al. Desorption activation energy of dibenzothiophene on the activated carbons modified by different metal salt solutions[J]. Chemical Engineering Journal, 2007, 132: 233-239. doi: 10.1016/j.cej.2007.01.003
    [30] WANG B, RONG C, CHATTARAJ P K, et al. A comparative study to predict regioselectivity, electrophilicity and nucleophilicity with Fukui function and Hirshfeld charge[J]. Theoretical Chemistry Accounts, 2019, 138: 1-9. doi: 10.1007/s00214-018-2385-y
    [31] NAKHLI A, BERGAOUI M, TOUMI K H, et al. Molecular insights through computational modeling of methylene blue adsorption onto low-cost adsorbents derived from natural materials: a multi-model's approach[J]. Computers and Chemical Engineering, 2020, 140: 106925/1-15. http://www.sciencedirect.com/science/article/pii/S0098135420303720
    [32] HOSSAIN M R, HASAN M M, ASHRAFI N E, et al. Adsorption behaviour of metronidazole drug molecule on the surface of hydrogenated graphene, boron nitride and boron carbide nanosheets in gaseous and aqueous medium: a comparative DFT and QTAIM insight[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126: 114483/1-14. doi: 10.1016/j.physe.2020.114483
    [33] ZHENG L, ZHANG S, CHENG W, et al. Theoretical calculations, molecular dynamics simulations and experimental investigation of the adsorption of cadmium(Ⅱ) on amidoxime-chelating cellulose[J]. Journal of Materials Chemistry A, 2019, 7: 13714-13726. doi: 10.1039/C9TA03622A
    [34] WANG F, WANG F, GONG X. Molecular dynamics study of interaction between acrylamide copolymers and alumina crystal[J]. Chinese Journal of Chemical Physics, 2012, 25(5): 571-576. doi: 10.1088/1674-0068/25/05/571-576
    [35] SUN Y, YANG S, CHEN Y, et al. Adsorption and desorption of U(Ⅵ) on functionalized graphene oxides: a combined experimental and theoretical study[J]. Environmental Science and Technology, 2015, 49: 4255-4262. doi: 10.1021/es505590j
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  42
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-24
  • 网络出版日期:  2021-04-29
  • 刊出日期:  2021-04-25

目录

    /

    返回文章
    返回