留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型明胶-无定形磷酸钙3D打印骨修复材料的制备

聂建华 王俊 侯勇 程江 莫嘉琪

聂建华, 王俊, 侯勇, 程江, 莫嘉琪. 新型明胶-无定形磷酸钙3D打印骨修复材料的制备[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 7-12. doi: 10.6054/j.jscnun.2021020
引用本文: 聂建华, 王俊, 侯勇, 程江, 莫嘉琪. 新型明胶-无定形磷酸钙3D打印骨修复材料的制备[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 7-12. doi: 10.6054/j.jscnun.2021020
NIE Jianhua, WANG Jun, HOU Yong, CHENG Jiang, MO Jiaqi. The Preparation of Novel Bone-repair Materials of Gelatin-amorphous Calcium Phosphate through Three-dimensional Printing[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(2): 7-12. doi: 10.6054/j.jscnun.2021020
Citation: NIE Jianhua, WANG Jun, HOU Yong, CHENG Jiang, MO Jiaqi. The Preparation of Novel Bone-repair Materials of Gelatin-amorphous Calcium Phosphate through Three-dimensional Printing[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(2): 7-12. doi: 10.6054/j.jscnun.2021020

新型明胶-无定形磷酸钙3D打印骨修复材料的制备

doi: 10.6054/j.jscnun.2021020
基金项目: 

广东省科技创新战略" 攀登计划" 专项项目 PDJH2020B1286

中山市社会公益科技研究项目 2019B2062

校级重点科研项目 2019KQ01

校级青年科研骨干项目 2019GG03

详细信息
    通讯作者:

    聂建华, Email: niechenzhou@126.com

  • 中图分类号: TB34

The Preparation of Novel Bone-repair Materials of Gelatin-amorphous Calcium Phosphate through Three-dimensional Printing

  • 摘要: 首先采用共沉淀法制备明胶改性的无定形磷酸钙(ACP)粉末材料,再以纯水作为粘接溶液,通过3D打印机制造骨移植修复材料,并应用红外光谱仪、X射线衍射仪以及扫描电子电镜进行表征. 对于明胶稳定无定形磷酸钙化学结构的相关作用机制给出了初步的解释,重点考察了明胶添加量对打印骨成品的微观形貌、抗压强度以及孔隙率的影响规律,确定了明胶最佳用量为0.15%(质量分数),此时打印骨成品的抗压强度高达31.7 MPa,孔隙率为30.2%,表明打印骨成品在力学性能和骨传导性之间取得了平衡,可被广泛应用于骨修复临床应用.
  • 图  1  恒温恒湿条件下明胶-ACP的储存寿命

    Figure  1.  The storage lifetime of gelatin-ACP under constant temperature and humidity

    图  2  恒温恒湿保养10周后明胶-ACP的XRD图谱

    Figure  2.  The XRD patterns of gelatin-ACP stored 10 weeks under constant temperature and humidity

    图  3  打印骨成品的性能

    Figure  3.  The properties of 3DP products

    图  4  打印骨成品的纵截面SEM图

    Figure  4.  The SEM of longitudinal section of 3DP products

    图  5  最优打印骨成品的XRD图谱

    Figure  5.  The XRD pattern of the optimal 3DP products

    图  6  明胶-ACP粉体与打印骨成品的红外光谱

    Figure  6.  The infrared spectra of the optimal gelatin-ACP and 3DP product

  • [1] EPPLE M, GANESAN K, HEUMANN R, et al. Application of calcium phosphate nanoparticles in biomedicine[J]. Journal of Materials Chemistry, 2010, 20(1): 18-23. doi: 10.1039/B910885H
    [2] DOROZHKIN S, EPPLE M. Biological and medical signi-ficance of calcium phosphates[J]. Angewandte Chemie International Edition, 2002, 41: 3130-3146. doi: 10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1
    [3] LEUCHT P, CASTILLO A B, BELLINO M J. Comparison of tricalcium phosphate cement and cancellous autograft as bone void filler in acetabular fractures with marginal impaction[J]. Injury, 2013, 44(7): 969-974. doi: 10.1016/j.injury.2013.04.017
    [4] SHEPHERD J H, BEST S M. Calcium phosphate scaffolds for bone repair[J]. Journal of Metals, 2011, 63(4): 83-92. doi: 10.1007/s11837-011-0063-9
    [5] PEREZ R, KIM T H, KIM M, et al. Calcium phosphate cements loaded with basic fibroblast growth factor: delivery and in vitro cell response[J]. Journal of Biomedical Materials Research, 2013, 101(4): 923-931. doi: 10.1002/jbm.a.34390
    [6] YU W, LI R, LONG J, et al. Use of a three-dimensional printed polylactide-coglycolide/tricalcium phosphate composite scaffold incorporating magnesium powder to enhance bone defect repair in rabbits[J]. Journal of Orthopaedic Translation, 2019, 16: 62-70. doi: 10.1016/j.jot.2018.07.007
    [7] CASAS-LUNA M, TAN H, TKACHENKO S, et al. Enhancement of mechanical properties of 3D-plotted tricalcium phosphate scaffolds by rapid sintering[J]. Journal of the European Ceramic Society, 2019, 39(14): 4366-4374. doi: 10.1016/j.jeurceramsoc.2019.05.055
    [8] CASTILHO M, MOSEKE C, EWALD A, et al. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects[J]. Biofabrication, 2014, 6: 015006/1-12. http://europepmc.org/abstract/med/24429776
    [9] KAKIAGE M, HATANAKA Y, KOBAYASHI H. Fabrication of three-dimensional interconnected nanoporous hydroxyapatite by freeze-thaw process of amorphous calcium phosphate-poly(vinyl alcohol) gel[J]. Journal of Alloys and Compounds, 2017, 696: 566-571. doi: 10.1016/j.jallcom.2016.11.205
    [10] CHATTERJEE K, SUN L, CHOW L C, et al. Combinatorial screening of osteoblast response to 3D calcium phosphate/poly(ε-caprolactone) scaffolds using gradients and arrays[J]. Biomaterials, 2011, 32(5): 1361-1369. doi: 10.1016/j.biomaterials.2010.10.043
    [11] BECKER A, ZIEGLER A, EPPLE M. The mineral phase in the cuticles of two species of Crustacea consists of magnesium calcite, amorphous calcium carbonate, and amorphous calcium phosphate[J]. Dalton Transactions, 2005, 21(10): 1814-1820. http://www.ncbi.nlm.nih.gov/pubmed/15877152
    [12] OTSUA M, MATSUDS Y, SUWA Y, et al. Effect of particle size of metastable calcium phosphates on mechanical strength of a novel self-setting bioactive calcium phosphate cement[J]. Journal of Biomedical Materials Research, 1995, 29(1): 25-32. doi: 10.1002/jbm.820290105
    [13] 聂建华, 吴皎皎, 程江, 等. 热塑性聚氨酯/石膏复合粉末的三维打印特性[J]. 化工进展, 2017, 36(6): 2230-2235. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201706039.htm

    NIE J H, WU J J, CHENG J, et al. Three-dimension printing of thermoplastic polyurethane/gypsum composited powder[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2230-2235. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201706039.htm
    [14] POSNER A S, BELTS F. Synthetic amorphous calcium phosphate and its relation to bone mineral structure[J]. Accounts of Chemical Research, 1975, 8(8): 273-281. doi: 10.1021/ar50092a003
    [15] LI Y, WILIANA T, TAM K C. Synthesis of amorphous calcium phosphate using various types of cyclodextrins[J]. Materials Research Bulletin, 2007, 42(5): 820-827. doi: 10.1016/j.materresbull.2006.08.027
    [16] CROSS K J, HUQ N L, PALAMARA J E, et al. Physicochemical characterization of casein phosphopeptide-amorphous calcium phosphate nanocomplexes[J]. Journal of Biological Chemistry, 2005, 280(15): 15362-15369. doi: 10.1074/jbc.M413504200
    [17] GEORGE A, VEIS A. Phosphorylated proteins and control over apatite nulcleation, crystal growth and inhibition[J]. Chemical Reviews, 2008, 108(11): 4670-4693. doi: 10.1021/cr0782729
    [18] ZHANG X J, LIN D Y, YAN X H, et al. Evolution of the magnesium incorporated amorphous calcium phosphate to nano-crystallized hydroxyapatite in alkaline solution[J]. Journal of Crystal Growth, 2011, 336(11): 60-66. http://www.sciencedirect.com/science/article/pii/S0022024811007962
    [19] PARK H, CARR W W, ZHU J Y, et al. Single drop impaction on a solid surface[J]. AIChE Journal, 2003, 49(10): 2461-2471. doi: 10.1002/aic.690491003
    [20] 聂建华, 程江, 杨卓如, 等. 羧基丙烯酸树脂微乳液的制备及其在3D打印中的应用[J]. 合成树脂及塑料, 2017, 34(3): 85-87. doi: 10.3969/j.issn.1002-1396.2017.03.026

    NIE J H, CHENG J, YANG Z R, et al. Preparation of carboxyl acrylic resin microemulsion and its application in 3D printing[J]. China Synthetic Resin and Plastics, 2017, 34(3): 85-87. doi: 10.3969/j.issn.1002-1396.2017.03.026
    [21] 聂建华, 周志盛, 霍泽荣, 等. 弹性产品用聚酰胺树脂打印通用型粉末材料及黏结溶液的研究[J]. 塑料工业, 2014, 42(1): 122-125. doi: 10.3969/j.issn.1005-5770.2014.01.029

    NIE J H, ZHOU Z S, HUO Z R, et al. Research on polyamide resin as prototyping powder and binder solution for elastic products via 3D printing[J]. China Plastics Industry, 2014, 42(1): 122-125. doi: 10.3969/j.issn.1005-5770.2014.01.029
    [22] GELLI R, RIDI F, BAGLIONI P. The importance of being amorphous: calcium and magnesium phosphates in the human body[J]. Advances in Colloid and Interface Science, 2019, 269: 219-235. doi: 10.1016/j.cis.2019.04.011
    [23] BENIASH E, METZLER R A, LAM R S, et al. Transient amorphous calcium phosphate in forming enamel[J]. Journal of Structural Biology, 2009, 166(2): 133-143. doi: 10.1016/j.jsb.2009.02.001
  • 加载中
图(6)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  75
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-21
  • 网络出版日期:  2021-04-29
  • 刊出日期:  2021-04-25

目录

    /

    返回文章
    返回