留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AhBG1转基因拟南芥的ABA敏感性和抗旱性研究

黄莹琳 张志 张洪亮 胡博 龙海涛

黄莹琳, 张志, 张洪亮, 胡博, 龙海涛. AhBG1转基因拟南芥的ABA敏感性和抗旱性研究[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 56-62. doi: 10.6054/j.jscnun.2021009
引用本文: 黄莹琳, 张志, 张洪亮, 胡博, 龙海涛. AhBG1转基因拟南芥的ABA敏感性和抗旱性研究[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 56-62. doi: 10.6054/j.jscnun.2021009
HUANG Yinglin, ZHANG Zhi, ZHANG Hongliang, HU Bo, LONG Haitao. The ABA Sensitivity and Drought Resistance of AhBG1 Transgenic Arabidopsis[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(1): 56-62. doi: 10.6054/j.jscnun.2021009
Citation: HUANG Yinglin, ZHANG Zhi, ZHANG Hongliang, HU Bo, LONG Haitao. The ABA Sensitivity and Drought Resistance of AhBG1 Transgenic Arabidopsis[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(1): 56-62. doi: 10.6054/j.jscnun.2021009

AhBG1转基因拟南芥的ABA敏感性和抗旱性研究

doi: 10.6054/j.jscnun.2021009
基金项目: 

国家自然科学基金项目 31471422

广东省科技创新战略专项资金项目 2018A030313629

详细信息
    通讯作者:

    龙海涛,Email:longht@scnu.edu.cn

  • 中图分类号: Q786

The ABA Sensitivity and Drought Resistance of AhBG1 Transgenic Arabidopsis

  • 摘要: 为探究花生基因AhBG1对拟南芥ABA敏感性和抗旱性的影响,以过表达AhBG1拟南芥为材料,检测其ABA敏感性及脱水处理下ABA质量分数、叶片失水率、干旱存活率及ABA稳态相关基因表达变化. 结果表明:AhBG1是编码花生β-葡萄糖苷酶的家族成员,定位于细胞质;与野生型相比,AhBG1过表达拟南芥植株在干旱条件下体内ABA水平提高,干旱存活率增加,增强有关生物合成途径和信号转导途径相关基因上调,抑制氧化代谢途径相关基因表达. AhBG1蛋白可能催化ABA-GE形成ABA,提高植物体内ABA的质量分数,通过影响ABA稳态相关基因的表达从而提高植物的抗旱性.
  • 图  1  花生AhBG1的生物信息学分析

    Figure  1.  The bioinformatic analysis of peanut AhBG1

    图  2  AhBG1转基因拟南芥的筛选和AhBG1蛋白定位

    Figure  2.  The screening of AhBG1 transgenic Arabidopsis thliana L. and the subcellular localization of AhBG1

    图  3  脱水处理下AhBG1转基因拟南芥和野生型叶片ABA质量分数的变化

    Figure  3.  The ABA content in the leaves of the transgenic AhBG1 lines and the Col-0 lines under drought stress

    图  4  AhBG1-OX-1株系拟南芥对外源ABA的敏感性分析

    注:曲线图中的*或柱状图中的不同小写字母代表差异具有统计学意义(P < 0.05),下图同.

    Figure  4.  The ABA sensitivity of the transgenic AhBG1-OX-1 lines

    图  5  AhBG1转基因拟南芥的抗旱性分析

    Figure  5.  The drought tolerance of the transgenic AhBG1 lines under drought stress

    图  6  脱水处理下AhBG1-OX-1株系和Col-0野生型叶片ABA稳态相关基因的表达变化

    Figure  6.  The expression of genes related to ABA homeostasis of leaves in the transgenic AhBG1-OX-1 lines and the Col-0 lines under dehydration stress

    表  1  相关基因表达所用的引物

    Table  1.   The primers for related gene expression

    基因 引物序列(5′→3′)
    actin F: GGTAACATTGTGCTCAGTGGTGG
    R: AACGACCTTAATCTTCATGCTGC
    AtAREB1 F: TGGTGGTCTTGTGGGACTTGG
    R: CCATTACTCTTCCCTATCCCTTC
    AtRD29A F: AAAGCAATGAGCATGAGCAAG
    R: AATCGGAAGACACGACAGGAA
    AtCYP707A1 F: AGCGACGGGATTCAGTATGGG
    R: AAAGGCAATTCTGTCATTCTAC
    AtNCED3 F: CGGTGGTTTACGACAAGAACAA
    R: CTGCTTCGAGGTTGACTTGTTGAT
    AtUGT71C5 F: ATCCGGGTCTAGCTTCGG
    R: ATTCCACGGCCCATTGTT
    下载: 导出CSV
  • [1] FINKELSTEIN R. Abscisic acid synthesis and response[J]. The Arabidopsis Book, 2013, 11: e0166/1-36. http://europepmc.org/articles/PMC3243367
    [2] 邓斌, 李玲, 李晓云, 等. AhHDA1异源表达影响拟南芥植株干旱性[J]. 华南师范大学学报(自然科学版), 2016, 48(5): 52-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201605011.htm

    DENG B, LI L, LI X Y, et al. Heterologous expression of AhHDA1 affects drought resistance of Arabidopsis plants[J]. Journal of South China Normal Universiey (Natural Science Edition), 2016, 48(5): 52-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201605011.htm
    [3] DIETZ K J, SAUTER A, WICHERT K, et al. Extracellular β-glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves[J]. Journal of Experimental Botany, 2000, 51(346): 937-944. doi: 10.1093/jexbot/51.346.937
    [4] LEE K H, PIAO H L, KIM H Y, et al. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid[J]. Cell, 2006, 126(6): 1109-1120. doi: 10.1016/j.cell.2006.07.034
    [5] HAN Y, WATANABE S, SHIMADA H, et al. Leaf endoplasmic reticulum dynamics modulate β-glucosidase mediated stress-activated ABA production from its glucosyl ester[J]. Journal of Experimental Botany, 2019, 71(6): 2058-2071.
    [6] GÓMEZ-ANDURO G, CENICEROS-OJEDA E A, CASADOS-VÁZQUEZ L E, et al. Genome-wide analysis of the beta-glucosidase gene family in maize (Zea mays L. var B73)[J]. Plant Molecular Biology, 2011, 77(1/2): 159-183. http://treephys.oxfordjournals.org/external-ref?access_num=10.1007/s11103-011-9800-2&link_type=DOI
    [7] WANG C, CHEN S, DONG Y, et al. Chloroplastic Os3B-Glu6 contributes significantly to cellular ABA pools and impacts drought tolerance and photosynthesis in rice[J]. New Phytologist, 2020, 226(4): 1042-1054. doi: 10.1111/nph.16416
    [8] HAN Y J, CHO K C, HWANG O J, et al. Overexpression of an Arabidopsis β-glucosidase gene enhances drought resistance with dwarf phenotype in creeping bentgrass[J]. Plant Cell Reports, 2012, 31(9): 1677-1686. doi: 10.1007/s00299-012-1280-6
    [9] ALLEN J, GUO K, ZHANG D, et al. ABA-glucose ester hydrolyzing enzyme ATBG1 and PHYB antagonistically regulate stomatal development[J]. PLoS One, 2019, 14(6): e0218605/1-19. http://www.ncbi.nlm.nih.gov/pubmed/31233537
    [10] LONG H T, ZHENG Z, ZHANG Y J, et al. An abscisic acid (ABA) homeostasis regulated by its production, catabolism and transport in peanut leaves in response to drought stress[J]. PLoS One, 2019, 14(6): e0213963/1-47. http://www.ncbi.nlm.nih.gov/pubmed/31242187
    [11] GE K, LIU X, LI X, et al. Isolation of an ABA transporter-like 1 gene from Arachis hypogaea that affects ABA import and reduces ABA sensitivity in Arabidopsis[J]. Frontiers in Plant Science, 2017, 8: 1150/1-10. http://europepmc.org/abstract/MED/28713410
    [12] MA Y L, CAO J, HE J H, et al. Molecular mechanism for the regulation of ABA homeostasis during plant development and stress responses[J]. International Journal of Molecular Sciences, 2018, 19(11): 3643/1-14. http://www.ncbi.nlm.nih.gov/pubmed/30463231
    [13] XU Z Y, LEE K H, DONG T, et al. A vacuolar -glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis[J]. Plant Cell, 2012, 24(5): 2184-2199. doi: 10.1105/tpc.112.095935
    [14] XU Z, ESCAMILLA-TREVI O L, ZENG L, et al. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1[J]. Plant Molecular Biology, 2004, 55(3): 343-367. doi: 10.1007/s11103-004-0790-1
    [15] IUCHI S, KOBAYASHI M, TAJI T, et al. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis[J]. The Plant Journal, 2001, 27(4): 325-333. doi: 10.1046/j.1365-313x.2001.01096.x
    [16] 胡博, 李嘉怡, 游琼英. 花生AhNCED1重组蛋白原核表达与二级结构初步分析[J]. 华南师范大学学报(自然科学版), 2011 (1): 87-92. http://journal-n.scnu.edu.cn/article/id/480

    HU B, LI J Y, YOU Q Y. Prokaryotic expression of AhNCED1 recombinant protein[J]. Journal of South China Normal University (Natural Science Edition), 2011(1): 87-92. http://journal-n.scnu.edu.cn/article/id/480
    [17] KUSHIRO T, OKAMOTO M, NAKABAYASHI K, et al. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases: key enzymes in ABA catabolism[J]. The EMBO Journal, 2004, 23(7): 1647-1656. doi: 10.1038/sj.emboj.7600121
    [18] FUJITA Y, FUJITA M, SATOH R, et al. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis[J]. Plant Cell, 2005, 17(12): 3470-3488. doi: 10.1105/tpc.105.035659
    [19] 王棚涛, 刘浩, 滑红杰. 液泡定位的β-葡萄糖苷酶增强拟南芥的耐旱性[J]. 科学通报, 2011, 56(30): 2506-2514. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201130014.htm

    WANG P T, LIU H, HUA H J. A vacuole localized β-glucosidase contributes to drought tolerance in Arabidopsis[J]. Chinese Science Bull, 2011, 56(30): 2506-2514. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201130014.htm
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  552
  • HTML全文浏览量:  143
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-28
  • 网络出版日期:  2021-03-24
  • 刊出日期:  2021-02-25

目录

    /

    返回文章
    返回