留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe/S耦合催化剂的合成及其芬顿催化性能

张鹏 吴宏海 魏燕富 卢鹏澄

张鹏, 吴宏海, 魏燕富, 卢鹏澄. Fe/S耦合催化剂的合成及其芬顿催化性能[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 50-55. doi: 10.6054/j.jscnun.2021008
引用本文: 张鹏, 吴宏海, 魏燕富, 卢鹏澄. Fe/S耦合催化剂的合成及其芬顿催化性能[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 50-55. doi: 10.6054/j.jscnun.2021008
ZHANG Peng, WU Honghai, WEI Yanfu, LU Pengcheng. The Synthesis and Fenton Catalytic Performance of the Fe/S Coupling Catalyst[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(1): 50-55. doi: 10.6054/j.jscnun.2021008
Citation: ZHANG Peng, WU Honghai, WEI Yanfu, LU Pengcheng. The Synthesis and Fenton Catalytic Performance of the Fe/S Coupling Catalyst[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(1): 50-55. doi: 10.6054/j.jscnun.2021008

Fe/S耦合催化剂的合成及其芬顿催化性能

doi: 10.6054/j.jscnun.2021008
基金项目: 

国家自然科学基金项目 42072046

广东省自然科学基金项目 2018B030311021

详细信息
    通讯作者:

    吴宏海,Email: whh302@163.com

  • 中图分类号: X788

The Synthesis and Fenton Catalytic Performance of the Fe/S Coupling Catalyst

  • 摘要: 采用低温真空冷冻干燥方法,以FeSO4和Na2S为原料合成了含NaFe2OH(SO3)2·H2O、FeS和FeS2等主要成分的复合物芬顿催化剂,采用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对材料进行了表征,并以苯酚为目标污染物,研究该催化剂对苯酚的催化降解性能. 结果表明:在催化剂投加质量浓度为0.3 g/L,H2O2初始浓度为50 mmol/L和pH为4.0的条件下,1 g/L的苯酚在反应30 min时的去除率为97%. 这说明该芬顿催化剂对高质量浓度苯酚的去除性能良好,在有机污染物的去除领域具有重要的应用前景.
  • 图  1  MECM催化剂的XRD图谱

    Figure  1.  The XRD pattern of MECM

    图  2  MECM的XPS谱

    Figure  2.  The XPS spectra of MECM

    图  3  不同反应系统对苯酚的降解性能

    注:苯酚的质量浓度为1 g/L,催化剂投加质量浓度为0.3 g/L,H2O2浓度为50 mmol/L,室温,pH=4.0.

    Figure  3.  The performance of phenol degradation with different reaction systems

    图  4  H2O2初始浓度对MECM催化降解苯酚的影响

    注:苯酚的质量浓度为1 g/L,催化剂投加质量浓度为0.3 g/L,室温,pH=4.0.

    Figure  4.  The effect of H2O2 concentration on the MECM-catalyzed degradation of phenol

    图  5  初始pH对MECM催化降解苯酚的影响

    注:苯酚的质量浓度为1 g/L,H2O2浓度为50 mmol/L,催化剂投加质量浓度为0.3 g/L,室温,pH=4.0.

    Figure  5.  The effect of initial pH on the degradation of phenol

    图  6  MECM投加质量浓度对降解苯酚的影响

    注:苯酚的质量浓度为1 g/L,H2O2浓度为50 mmol/L,室温,pH=4.0.

    Figure  6.  The effect of MECM dosage on the degradation of phenol

    图  7  苯酚降解产物质量浓度的变化

    注:苯酚的质量浓度为1 g/L,催化剂投加质量浓度为0.3 g/L,H2O2浓度为50 mmol/L,室温,pH=4.0.

    Figure  7.  The mass concentration change of the products during the phenol degradation

    图  8  降解苯酚过程中H2O2的浓度变化

    注:苯酚的质量浓度为1 g/L,催化剂投加质量浓度为0.3 g/L,H2O2浓度为50 mmol/L,室温,pH=4.0.

    Figure  8.  The change of H2O2 concentration during the phenol degradation

    图  9  MECM催化降解高浓度苯酚机理

    Figure  9.  The mechanism of MECM-catalytic degradation of high-concentration phenol

  • [1] AHMED S, RASUL M G, MARTENS W N, et al. Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments[J]. Desalination, 2010, 261: 3-18. doi: 10.1016/j.desal.2010.04.062
    [2] WEI X, WU H, HE G, et al. Efficient degradation of phenol using iron-montmorillonite as a Fenton catalyst: importance of visible light irradiation and intermediates[J]. Journal of Hazardous Materials, 2017, 321: 408-416. doi: 10.1016/j.jhazmat.2016.09.031
    [3] CHUNG J S, SOHN H J. Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries[J]. Journal of Power Sources, 2002, 108: 226-231. doi: 10.1016/S0378-7753(02)00024-1
    [4] WANG J, NG S H, WANG G X, et al. Synthesis and characterization of nanosize cobalt sulfide for rechargeable lithium batteries[J]. Journal of Power Sources, 2006, 159: 287-290. doi: 10.1016/j.jpowsour.2006.04.092
    [5] WILLEKE G, BLENK O, KLOC C, et al. Preparation and electrical transport properties of pyrite(FeS2) single crystals[J]. Journal of Alloys and Compounds, 1992, 178: 181-191. doi: 10.1016/0925-8388(92)90260-G
    [6] WU R, ZHENG Y F, ZHANG X G, et al. Hydrothermal synthesis and crystal structure of pyrite[J]. Journal of Crystal Growth, 2004, 266: 523-527. doi: 10.1016/j.jcrysgro.2004.02.020
    [7] HUO L, XIE W, QIAN T, et al. Reductive immolobilization of pertechnetate in soil and groundwater using synthetic pyrite nanoparticles[J]. Chemosphere, 2017, 174: 456-465. doi: 10.1016/j.chemosphere.2017.02.018
    [8] PIMENTEL M, OTURAN N, DEZOTTI M, et al. Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode[J]. Applied Catalysis B: Environmental, 2008, 83: 140-149. doi: 10.1016/j.apcatb.2008.02.011
    [9] SATTERFIELD C N, BONNELL A H. Interferences in titanium sulfate method for hydrogen peroxide[J]. Analytical Chemistry, 1955, 27(7): 1174-1175. doi: 10.1021/ac60103a042
    [10] ZHU L, RICHARDSON B J, YU Q M. Anisotropic growth of iron pyrite FeS2 nanocrystals via oriented attachment[J]. Chemistry of Materials, 2015, 27: 3516-3525. doi: 10.1021/acs.chemmater.5b00945
    [11] SHI F X, ZHANG L, YANG J W, et al. Polymorphous FeS corrosion products of pipeline steel under highly sour conditions[J]. Corrosion Science, 2016, 102: 103-113. doi: 10.1016/j.corsci.2015.09.024
    [12] ZHANG N Q, CHEN J Y, FANG Z Q, et al. Ceria accelerated nanoscale zerovalent iron assisted heterogenous Fenton oxidation of tetracycline[J]. Journal of Chemical Engineering, 2019, 369: 588-599. doi: 10.1016/j.cej.2019.03.112
    [13] TAN L, LU S, FANG Z, et al. Enhanced reductive debromination and subsequent oxidative ring-opening of decabromodiphenyl ether by integrated catalyst of nZVI supported on magnetic Fe3O4 nanoparticles[J]. Applied Catalysis B: Environmental, 2017, 200: 200-210. doi: 10.1016/j.apcatb.2016.07.005
    [14] JIN H, TIAN X K, NIE Y L, et al. Oxygen vacancy promoted heterogeneous Fenton-like degradation of ofloxacin at pH 3.2-9.0 by Cu substituted magnetic Fe3O4@FeOOH nanocomposite[J]. Environmental Science & Technology, 2017, 51: 12699-12706.
    [15] TODA K, TANAKA T, TSUDA Y, et al. Sulfurized limonite as material for fast decomposition of organic compounds by heterogeneous Fenton reaction[J]. Journal of Hazardous Materials, 2014, 278: 426-432. doi: 10.1016/j.jhazmat.2014.06.033
    [16] TONIAZZO V, MUSTIN C, PORTAL J M, et al. Elemental sulfur at the pyrite surfaces: speciation and quantification[J]. Applied Surface Science, 1999, 143: 229-237. doi: 10.1016/S0169-4332(98)00918-0
    [17] CHEN H, ZHANG Z, YANG Z, et al. Heterogeneous Fenton-like catalytic degradation of 2, 4-dichlorophenoxyacetic acid in water with FeS[J]. Chemical Engineering Journal, 2015, 273: 481-489. doi: 10.1016/j.cej.2015.03.079
    [18] XU L, WANG J. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol[J]. Journal of Hazardous Materials, 2011, 186: 256-264. doi: 10.1016/j.jhazmat.2010.10.116
    [19] CAI W, CHEN F, SHEN X, et al. Enhanced catalytic degradation of AO7 in the CeO2-H2O2 system with Fe3+ doping[J]. Applied Catalysis B: Environmental, 2010, 101: 160-168. doi: 10.1016/j.apcatb.2010.09.031
    [20] ZAZO J A, CASAS J A, MOHEDANO A F, et al. Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst[J]. Applied Catalysis B: Environmental, 2006, 65: 261-268. doi: 10.1016/j.apcatb.2006.02.008
    [21] CHEN R, PIGNATELLO J J. Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds[J]. Environmental Science & Technology, 1997, 31(8): 2399-2406.
    [22] CARMEM L P S, ZANTA, FRIEDRICH L C, MACHULEK A, et al. Surfactant degradation by a catechol-driven Fenton reaction[J]. Journal of Hazardous Materials, 2010, 178: 258-263. doi: 10.1016/j.jhazmat.2010.01.071
    [23] GULSHAN F, YANAGIDA S, KAMESHIMA Y, et al. Various factors affecting photodecomposition of methylene blue by iron-oxides in an oxalate solution[J]. Water Research, 2010, 44(9): 2876-2884. doi: 10.1016/j.watres.2010.01.040
    [24] LU M C, CHEN J N, HUANG H H. Role of goethite dissolution in the oxidation of 2-chlorophenol with hydrogen peroxide[J]. Chemosphere, 2002, 46(1): 131-136. doi: 10.1016/S0045-6535(01)00076-5
    [25] SUN Y, DANISH M, ALI M, et al. Trichloroethene degradation by nanoscale CaO2 activated with Fe(Ⅱ)/FeS: the role of FeS and the synergistic activation mechanism of Fe(Ⅱ)/FeS[J]. Chemical Engineering Journal, 2020, 394: 124830/1-9. doi: 10.1016/j.cej.2020.124830
    [26] NAKAGAWA H, YAMAGUCHI E. Influence of oxalic acid formed on the degradation of phenol by Fenton reagent[J]. Chemosphere, 2012, 88(2): 183-187. doi: 10.1016/j.chemosphere.2012.02.082
  • 加载中
图(9)
计量
  • 文章访问数:  333
  • HTML全文浏览量:  104
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-18
  • 网络出版日期:  2021-03-24
  • 刊出日期:  2021-02-25

目录

    /

    返回文章
    返回