留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蒙脱石负载硫掺杂赤铁矿复合材料的光芬顿催化性能及其增强机理研究

何家鸿 吴宏海 卢鹏澄

何家鸿, 吴宏海, 卢鹏澄. 蒙脱石负载硫掺杂赤铁矿复合材料的光芬顿催化性能及其增强机理研究[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 42-49. doi: 10.6054/j.jscnun.2021007
引用本文: 何家鸿, 吴宏海, 卢鹏澄. 蒙脱石负载硫掺杂赤铁矿复合材料的光芬顿催化性能及其增强机理研究[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 42-49. doi: 10.6054/j.jscnun.2021007
HE Jiahong, WU Honghai, LU Pengcheng. The Photo-Fenton Catalytic Property of the Sulfur-Doped Hematite over Montmorillonite Composite and Its Enhancement[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(1): 42-49. doi: 10.6054/j.jscnun.2021007
Citation: HE Jiahong, WU Honghai, LU Pengcheng. The Photo-Fenton Catalytic Property of the Sulfur-Doped Hematite over Montmorillonite Composite and Its Enhancement[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(1): 42-49. doi: 10.6054/j.jscnun.2021007

蒙脱石负载硫掺杂赤铁矿复合材料的光芬顿催化性能及其增强机理研究

doi: 10.6054/j.jscnun.2021007
基金项目: 

国家自然科学基金项目 42072046

广东省自然科学基金项目 2018B030311021

详细信息
    通讯作者:

    吴宏海,Email: whh302@163.com

  • 中图分类号: X788; O64

The Photo-Fenton Catalytic Property of the Sulfur-Doped Hematite over Montmorillonite Composite and Its Enhancement

  • 摘要: 采用水热联合煅烧法合成了一种蒙脱石负载S掺杂赤铁矿的高效新型非均相芬顿催化剂(S-α-Fe2O3/Mnt). 采用X射线衍射(XRD)、X射线光电子能谱(XPS)、电子顺磁共振(EPR)以及捕获测试方法对催化剂进行表征,并深入研究了催化性能及其增强机理. 结果表明:S-α-Fe2O3/Mnt的可见光芬顿催化性能良好,且拥有较宽的有效pH范围. 在pH 3.0时其所催化的光芬顿反应速率快,50 mg/L的苯酚在10 min时降解率达到100%;即使当pH 5.0时,尽管苯酚降解速率有所降低,但50 mg/L的苯酚仍可以在60 min内完全降解. 进一步对催化降解机理的研究表明:S掺杂可在S-α-Fe2O3/Mnt的α-Fe2O3相中引入了硫离子,形成大量的结构氧缺陷空位(OVs),从而增强矿物材料的光催化性能;此外,蒙脱石表面酸位点可以拓宽该催化剂的有效pH范围. 因此,S-α-Fe2O3/Mnt是一种在环境修复中具有重要应用前景的芬顿催化剂.
  • 图  1  各合成材料的XRD图谱

    Figure  1.  The XRD patterns of as-synthesized catalysts

    图  2  催化剂S-α-Fe2O3/Mnt的TEM图

    Figure  2.  The TEM images of the catalyst S-α-Fe2O3/Mnt

    图  3  S-α-Fe2O3/Mnt的XPS能谱以及EPR分析

    Figure  3.  The XPS spectra and EPR analysis of S-α-Fe2O3/Mnt

    图  4  S-α-Fe2O3/Mnt的紫外-可见漫反射分析

    Figure  4.  The UV-Vis diffusion spectra of S-α-Fe2O3/Mnt

    图  5  3种催化剂的激发光谱

    Figure  5.  The excitation spectra of 3 catalysts

    图  6  不同反应系统对苯酚去除情况的对比

    Figure  6.  The comparison between different reaction systems for phenol removal

    图  7  不同pH和光照条件对S-α-Fe2O3/Mnt催化降解苯酚的影响

    Figure  7.  The effect of different pH and light conditions on the photo-catalytic degradation of phenol with S-α-Fe2O3/Mnt

    图  8  催化剂的铁溶出质量浓度

    Figure  8.  The concentration of iron dissolved of the catalysts

    图  9  S-α-Fe2O3/Mnt循环降解实验

    Figure  9.  The cyclic tests of the phenol Fenton degradation with S-α-Fe2O3/Mnt

    表  1  3种不同催化剂的BET表征数据

    Table  1.   The BET characterization data for the three catalysts

    样品 比表面积/(m2·g-1) 孔容积/(cm3·g-1) 平均孔径/nm
    S-α-Fe2O3/Mnt 52.37 0.153 6 11.20
    α-Fe2O3/Mnt 71.38 0.109 7 6.23
    S-α-Fe2O3 12.35 0.053 4 21.63
    下载: 导出CSV

    表  2  在可见光照射下S-α-Fe2O3/Mnt与其他芬顿催化剂的性能对比

    Table  2.   The performance of S-α-Fe2O3/Mnt compared with other Fenton catalysts under visible-light irradiation

    催化剂 ρ(苯酚)/(mg·L-1) ρ(催化剂)/(g·L-1) ρ(溶出铁)/(mg·L-1) pH t/min 降解率/%
    S-α-Fe2O3/Mnt 50 0.5 0.1 5.0 50 95
    Fe-Mnt[21] 100 4.0 14.0 3.0 120 100
    Al-MCM/rGO/FeOOH[22] 100 0.5 0.4 6.0 60 90
    α-Fe2O3/rGO[23] 10 1.0 120 70
    Al-Fe-Mnt[24] 50 0.5 3.0 80 100
    Fe3O4[25] 9.41 0.2 1.2 3.0 240 100
    下载: 导出CSV
  • [1] GARRIDO-RAMÍREZ E G, THENG B K G, MORA M L. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions: a review[J]. Applied Clay Science, 2010, 47(3/4): 182-192. http://www.cabdirect.org/abstracts/20103084568.html
    [2] HE D, CHEN Y, SITU Y, et al. Synthesis of ternary g-C3N4/Ag/γ-FeOOH photocatalyst: an integrated heterogeneous Fenton-like system for effectively degradation of azo dye methyl orange under visible light[J]. Applied Surface Science, 2017, 425: 862-872. doi: 10.1016/j.apsusc.2017.06.124
    [3] ZHU Y, ZHU R, YAN L, et al. Visible-light Ag/AgBr/ferrihydrite catalyst with enhanced heterogeneous photo-Fenton reactivity via electron transfer from Ag/AgBr to ferrihydrite[J]. Applied Catalysis B: Environmental, 2018, 239: 280-289. doi: 10.1016/j.apcatb.2018.08.025
    [4] WANG Y, WANG Y, CAO J, et al. Low-temperature H2S sensors based on Ag-doped α-Fe2O3 nanoparticles[J]. Sensors and Actuators B: Chemical, 2008, 131(1): 183-189. doi: 10.1016/j.snb.2007.11.002
    [5] GUO L, CHEN F, FAN X, et al. S-doped α-Fe2O3 as a highly active heterogeneous Fenton-like catalyst towards the degradation of acid orange 7 and phenol[J]. Applied Catalysis B: Environmental, 2010, 96(1/2): 162-168. http://www.sciencedirect.com/science/article/pii/S0926337310000718
    [6] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5): 751-767. doi: 10.1107/S0567739476001551
    [7] BUTLER V, CATLOW C, FENDER B, et al. Dopant ion radius and ionic conductivity in cerium dioxide[J]. Solid State Ionics, 1983, 8(2): 109-113. doi: 10.1016/0167-2738(83)90070-X
    [8] YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science, 2008, 254(8): 2441-2449. doi: 10.1016/j.apsusc.2007.09.063
    [9] LICHTMAN D, CRAIG J H, SAILER V, et al. AES and XPS spectra of sulfur in sulfur compounds[J]. Applications of Surface Science, 1981, 7(4): 325-331. doi: 10.1016/0378-5963(81)90080-5
    [10] ZHUANG L, GE L, YANG Y, et al. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction[J]. Advanced Materials, 2017, 29(17): 1-7. http://www.researchgate.net/publication/345920100_CommuniCation_Ultrathin_Iron-Cobalt_Oxide_Nanosheets_with_Abundant_Oxygen_Vacancies_for_the_Oxygen_Evolution_Reaction
    [11] TANG J, ZOU Z, YE J. Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation[J]. Angewandte Chemie International Edition in English, 2004, 43(34): 4463-4466. doi: 10.1002/anie.200353594
    [12] LI X Z, LI F B, YANG C L, et al. Photocatalytic activity of WOx-TiO2 under visible light irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 141(2/3): 209-217. http://www.sciencedirect.com/science/article/pii/S1010603001004464
    [13] FUJIHARA K, IZUMI S, OHNO T, et al. Time-resolved photoluminescence of particulate TiO2 photocatalysts suspended in aqueous solutions[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 132(1/2): 99-104. http://www.sciencedirect.com/science/article/pii/S1010603000002045
    [14] ZHU Y, ZHU R, XI Y, et al. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: a review[J]. Applied Catalysis B: Environmental, 2019, 255: 1-16. http://www.sciencedirect.com/science/article/pii/S0926337319304783
    [15] SUN Z, HE X, DU J, et al. Synergistic effect of photocata-lysis and adsorption of nano-TiO2 self-assembled onto sulfanyl/activated carbon composite[J]. Environmental Science and Pollution Research, 2016, 23(21): 21733-21740. doi: 10.1007/s11356-016-7364-z
    [16] JIN H, TIAN X, NIE Y, et al. Oxygen vacancy promoted heterogeneous Fenton-like degradation of Ofloxacin at pH 3.2-9.0 by Cu substituted Magnetic Fe3 O4 @ FeOOH nanocomposite[J]. Environmental Science & Technology, 2017, 51(21): 12699-12706. http://www.ncbi.nlm.nih.gov/pubmed/28934546
    [17] LI H, SHANG J, YANG Z, et al. Oxygen vacancy associated surface Fenton chemistry: surface structure dependent hydroxyl radicals generation and substrate dependent reactivity[J]. Environmental Science & Technology, 2017, 51(10): 5685-5694.
    [18] XIA Q, YAO Z, ZHANG D, et al. Rational synthesis of micronano dendritic ZVI@Fe3 O4 modified with carbon quantum dots and oxygen vacancies for accelerating Fenton-like oxidation[J]. Science of the Total Environment, 2019, 671: 1056-1065. doi: 10.1016/j.scitotenv.2019.03.435
    [19] KIM Y, KANG S. Calculation of formation energy of oxygen vacancy in ZnO based on photoluminescence measurements[J]. Journal of Physical Chemistry B, 2010, 114(23): 7874-7878. doi: 10.1021/jp100086v
    [20] MARSHALL C E. Layer lattices and the base-exchange clays[J]. Zeitschrift für Kristallographie-Crystalline Materials, 1935, 91: 433-449. http://www.degruyter.com/downloadpdf/j/zkri.1935.91.issue-1-6/zkri.1935.91.1.433/zkri.1935.91.1.433.xml
    [21] WEI X, WU H, HE G, et al. Efficient degradation of phenol using iron-montmorillonite as a Fenton catalyst: importance of visible light irradiation and intermediates[J]. Journal of Hazardous Materials, 2017, 321: 408-416. doi: 10.1016/j.jhazmat.2016.09.031
    [22] WANG Y, LIANG M, FANG J, et al. Visible-light photo-Fenton oxidation of phenol with rGO-alpha-FeOOH supported on Al-doped mesoporous silica (MCM-41) at neutral pH: performance and optimization of the catalyst[J]. Chemosphere, 2017, 182: 468-476. doi: 10.1016/j.chemosphere.2017.05.037
    [23] PRADHAN G K, PADHI D K, PARIDA K M. Fabrication of alpha-Fe2 O3 nanorod/rGO composite: a novel hybrid photocatalyst for phenol degradation [J]. ACS Applied Materials & Interfaces, 2013, 5(18): 9101-9110. http://europepmc.org/abstract/med/23962068
    [24] WEI X, WU H, SUN F. Magnetite/Fe-Al-montmorillonite as a Fenton catalyst with efficient degradation of phenol[J]. Journal of Colloid and Interface Science, 2017, 504: 611-619. doi: 10.1016/j.jcis.2017.05.110
    [25] MINELLA M, MARCHETTI G, DE LAURENTIIS E, et al. Photo-Fenton oxidation of phenol with magnetite as iron source[J]. Applied Catalysis B: Environmental, 2014, 154: 102-109. http://www.sciencedirect.com/science/article/pii/S0926337314000976
    [26] ILMAS E R, SAVIKHINA T I. Investigation of luminescence excitation processes in some oxygen-dominated compounds by 3 to 21 eV photons[J]. Journal of Luminescence, 1970, 2: 702-715. http://www.sciencedirect.com/science/article/pii/0022231370900839
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  284
  • HTML全文浏览量:  157
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-26
  • 网络出版日期:  2021-03-24
  • 刊出日期:  2021-02-25

目录

    /

    返回文章
    返回