留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波消解/ICP-OES法对注射用氟氯西林钠中18种元素杂质的测定

张志峰 王子杏 李殿梅 严逸伦 殷霞 范军 章伟光

张志峰, 王子杏, 李殿梅, 严逸伦, 殷霞, 范军, 章伟光. 微波消解/ICP-OES法对注射用氟氯西林钠中18种元素杂质的测定[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 29-35. doi: 10.6054/j.jscnun.2021005
引用本文: 张志峰, 王子杏, 李殿梅, 严逸伦, 殷霞, 范军, 章伟光. 微波消解/ICP-OES法对注射用氟氯西林钠中18种元素杂质的测定[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 29-35. doi: 10.6054/j.jscnun.2021005
ZHANG Zhifeng, WANG Zixing, LI Dianmei, YAN Yilun, YIN Xia, FAN Jun, ZHANG Weiguang. Determination of Eighteen Elemental Impurities in Flucloxacillin Sodium for Injection through ICP-OES with Microwave Digestion[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(1): 29-35. doi: 10.6054/j.jscnun.2021005
Citation: ZHANG Zhifeng, WANG Zixing, LI Dianmei, YAN Yilun, YIN Xia, FAN Jun, ZHANG Weiguang. Determination of Eighteen Elemental Impurities in Flucloxacillin Sodium for Injection through ICP-OES with Microwave Digestion[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(1): 29-35. doi: 10.6054/j.jscnun.2021005

微波消解/ICP-OES法对注射用氟氯西林钠中18种元素杂质的测定

doi: 10.6054/j.jscnun.2021005
基金项目: 

广东省自然科学基金项目 2018A030313193

详细信息
    通讯作者:

    范军,Email: fanj@scnu.edu.cn

    章伟光,Email: wgzhang@scnu.edu.cn

  • 中图分类号: O657.31

Determination of Eighteen Elemental Impurities in Flucloxacillin Sodium for Injection through ICP-OES with Microwave Digestion

  • 摘要: 采用了微波消解/电感耦合等离子体发射光谱法(ICP-OES),建立了注射用氟氯西林钠中18种元素杂质的分析方法. 在氟氯西林钠样品中加入浓硝酸后进行微波消解,再通过ICP-OES分析. 采用垂直观测模式有效减少了易电离元素电离效应的干扰. 该方法的线性良好,线性相关系数大于0.998,检出限为0.000 1~0.032 1 mg/L,重复性和精密度的相对标准偏差均小于10%,加标回收率在82.9%~105.7%. 采用该方法对3批注射用氟氯西林钠进行检测,样品中元素杂质的含量符合ICH-Q3D与USP通则 < 232>的规定. 该方法的灵敏度和重复性好、准确度高、分析速度快,为注射用氟氯西林钠产品的质量控制提供了技术参考.
  • 图  1  氟氯西林钠的分子结构

    Figure  1.  The molecular structure of flucloxacillin sodium

    表  1  微波消解程序

    Table  1.   The microwave digestion program

    序号 步骤 微波功率/W 消解时间/min
    1 爬坡 400 10
    2 保持 400 20
    3 爬坡 800 20
    4 保持 800 60
    5 冷却 10
    下载: 导出CSV

    表  2  系统适应性及相对标准偏差(n=6)

    Table  2.   The results of system adaptability and the RSDs(n=6)

    元素 ρ实验值/ (mg·L-1) RSD/% 元素 ρ实验值/ (mg·L-1) RSD/%
    AlH 1.359 1.45 SiH 1.332 1.63
    BH 1.322 1.11 AsH 0.015 3.37
    CaH 1.337 1.76 CdH 0.002 3.93
    FeH 1.388 2.48 PbH 0.005 5.89
    MnH 1.363 1.57 CoH 0.005 1.99
    KV 1.325 2.15 BaH 0.709 1.30
    MgH 1.378 1.96 CrH 1.089 0.66
    ZnH 1.317 0.88 LiV 0.264 1.67
    TiH 1.333 2.24 SbH 0.092 1.66
    注:H为水平观测模式; V为垂直观测模式.
    下载: 导出CSV

    表  3  不同观测模式下K、Li元素的加标回收率结果及相对标准偏差(n=3)

    Table  3.   The recovery results and RSDs (n=3) of K and Li elements under different observation modes

    观测模式 K元素 Li元素
    ρ/(mg·L-1) 回收率/% ρ/(mg·L-1) 回收率/%
    ρ原始 ρ加标 ρ实验值 Ra/% RSD/% ρ原始 ρ加标 ρ实验值 Ra/% RSD/%
    垂直 0.136 2.600 2.812 103.0 1.08 0.500 0.499 99.7
    3.245 3.543 105.0 0.624 0.625 100.1 0.78
    3.900 4.158 103.2 0.750 0.740 98.6
    水平 0.106 2.600 3.695 138.1 2.07 0.500 0.385 77.0
    3.245 4.492 135.2 0.624 0.478 76.5 1.34
    3.900 5.272 132.5 0.750 0.563 75.1
    注:“—”表示原始样品中Li元素浓度低于检出限;Ra为平均回收率.
    下载: 导出CSV

    表  4  线性相关系数、线性方程、检出限及定量限结果

    Table  4.   The linear correlation coefficient, regression equation, LOD and LOQ

    元素 ρ的线性范围/(mg·L-1) 线性方程 R2 LOD/(mg·L-1) LOQ/(mg·L-1)
    AlH 0~5.200 I=38 706.8 ρ+1 397.4 0.999 0.000 9 0.003 1
    BH 0~5.200 I=20 877.3 ρ-178.8 0.999 0.010 6 0.035 2
    CaH 0~5.200 I=43 772.4 ρ+69.2 0.999 0.000 8 0.002 8
    FeH 0~5.200 I=22 402.3 ρ+185.4 0.999 0.001 7 0.005 6
    MnH 0~5.200 I=158 726.5 ρ+2 830.3 0.999 0.000 3 0.000 8
    KR 0~5.200 I=1 262.6 ρ+25.8 0.999 0.032 1 0.107 1
    MgH 0~5.200 I=763 538.9 ρ+66 732.4 0.999 0.000 4 0.001 3
    ZnH 0~5.200 I=27 728.5 ρ+533.0 0.999 0.005 0 0.016 7
    TiH 0~5.200 I=113 000.3 ρ-1 077.3 0.999 0.000 7 0.002 4
    SiH 0~5.200 I=2 156.3 ρ-4.9 0.999 0.004 9 0.016 4
    AsH 0~0.060 I=1 149.8 ρ+1.3 0.999 0.001 2 0.004 0
    CdH 0~0.008 I=41 747.0 ρ+4.4 0.999 0.000 1 0.000 2
    PbH 0~0.020 I=3 372.2 ρ+7.5 0.998 0.000 7 0.002 3
    CoH 0~0.020 I=24 624.7 ρ+10.1 0.999 0.000 1 0.000 4
    BaH 0~2.800 I=32 212.4 ρ-113.7 0.999 0.000 1 0.000 3
    CrH 0~4.400 I=27 469.9 ρ-357.0 0.999 0.001 2 0.004 1
    LiR 0~1.000 I=8 261.5 ρ+24.0 0.999 0.004 2 0.014 0
    SbH 0~0.360 I=682.0 ρ-4.0 0.999 0.003 7 0.012 5
    注:H为水平观测模式;V为垂直观测模式;I为标准曲线溶液中元素信号强度;ρ为标准曲线溶液中元素的质量浓度(mg/L).
    下载: 导出CSV

    表  5  平均加标回收率、重复性和中间精密度结果

    Table  5.   The average recovery, repeatability and intermediate precision

    元素 加标实验 重复性 中间精密度
    ρ原始/ (mg·L-1) ρ加标/ (mg·L-1) ρ实验值/ (mg·L-1) Ra/% RSD/% ρ实验值/ (mg·L-1) RSD/% ρ实验值/ (mg·L-1) RSD/%
    AlH 2.600 2.202 84.7 0.84 2.650 0.49 2.653 0.98
    3.245 2.708 83.5
    3.900 3.256 83.5
    BH 0.016 2.600 2.413 92.2 1.03 2.892 0.31 2.920 1.10
    3.245 2.972 91.1
    3.900 3.538 90.3
    CaH 0.569 2.600 2.930 90.8 0.39 3.318 4.05 3.632 9.39
    3.245 3.515 90.8
    3.900 4.086 90.2
    FeH 0.048 2.600 2.638 99.6 1.09 3.066 0.57 3.090 1.02
    3.245 3.351 101.8
    3.900 3.972 100.6
    MnH 2.600 2.514 96.7 0.72 3.035 0.58 3.051 0.73
    3.245 3.133 96.5
    3.900 3.721 95.4
    KR 0.136 2.600 2.812 102.9 1.09 3.427 0.74 3.555 3.82
    3.245 3.543 105.0
    3.900 4.158 103.1
    MgH 2.600 2.594 99.8 1.92 3.162 0.26 3.170 0.35
    3.245 3.226 99.4
    3.900 3.757 96.3
    ZnH 0.019 2.600 2.501 95.5 0.80 3.036 0.25 2.994 1.68
    3.245 3.151 96.5
    3.900 3.725 95.0
    TiH 2.600 2.560 98.5 0.83 3.172 0.28 3.077 3.55
    3.245 3.215 99.1
    3.900 3.801 97.5
    SiH 0.091 2.600 2.612 97.0 1.41 3.094 0.35 3.166 2.40
    3.245 3.322 99.6
    3.900 3.957 99.1
    AsH 0.030 0.029 97.0 1.60 0.037 1.55 0.037 1.21
    0.037 5 0.038 100.2
    0.450 0.045 98.8
    CdH 0.004 0.004 96.8 1.64 0.005 1.75 0.005 1.67
    0.005 0.005 99.0
    0.006 0.006 95.9
    PbH 0.001 0.010 0.010 92.3 4.65 0.011 2.72 0.011 6.18
    0.012 5 0.013 94.9
    0.015 0.014 86.6
    CoH 0.010 0.010 99.8 3.83 0.011 1.32 0.012 1.69
    0.012 5 0.012 93.2
    0.015 0.014 93.7
    BaH 0.001 1.400 1.373 98.0 0.66 1.687 0.24 1.693 0.49
    1.747 1.725 98.7
    2.100 2.046 97.4
    CrH 0.047 2.200 2.292 102.0 0.14 2.731 0.39 2.772 1.88
    2.746 2.852 102.2
    3.300 3.410 101.9
    LiR 0.500 0.498 99.7 0.79 0.622 0.92 0.619 1.49
    0.624 0.625 100.1
    0.750 0.740 98.6
    SbH 0.004 0.180 0.181 98.7 0.68 0.219 0.59 0.221 1.05
    0.225 0.226 99.2
    0.270 0.268 97.8
    注:“—”表示元素质量浓度低于检出限;在平均加标回收率的相对标准偏差中,n=3;在重复性、中间精密度的相对准偏差中,n=6、12.
    下载: 导出CSV

    表  6  注射用不同规格氟氯西林钠样品中各元素的质量浓度

    Table  6.   The concentration distribution of 18 elemental impurities in flucloxacillin sodium for injection   mg/L

    元素 0.25 g规格 0.50 g规格 1.00 g规格 LC
    1 2 3 1 2 3 1 2 3
    AlH 0.078 0 0.077 3 0.078 2 0.376 5 0.378 8 0.372 2 0.016 5 0.016 4 0.017 2 3.250 0
    BH 0.028 2 0.025 0 0.023 6 0.012 8 0.012 8 0.012 9 3.250 0
    CaH 0.011 1 0.009 7 0.019 5 0.297 9 0.296 8 0.291 6 0.011 4 0.010 4 0.009 8 3.250 0
    FeH 0.050 4 0.050 3 0.052 6 0.041 5 0.042 1 0.041 8 0.007 1 0.007 2 0.007 3 3.250 0
    MnH 3.250 0
    KV 0.041 9 0.006 9 0.038 1 0.060 2 0.018 6 0.045 3 0.043 9 0.065 5 3.250 0
    MgH 0.047 8 0.047 4 0.048 1 0.622 1 0.618 8 0.626 9 3.250 0
    ZnH 3.250 0
    TiH 0.022 3 0.021 1 0.020 5 3.250 0
    SiH 0.794 2 0.712 1 0.708 4 0.667 5 0.775 2 0.831 2 1.099 2 1.024 1 0.965 0 3.250 0
    AsH 0.000 4 0.037 5
    CdH 0.005 0
    PbH 0.000 5 0.000 4 0.001 5 0.001 2 0.001 2 0.000 2 0.012 5
    CoH 0.000 1 0.000 1 0.000 1 0.012 5
    BaH 1.750 0
    CrH 0.009 5 0.009 8 0.009 9 0.000 6 0.001 0 0.000 7 2.750 0
    LiV 0.625 0
    SbH 0.005 5 0.004 3 0.002 8 0.002 5 0.002 0 0.002 8 0.002 9 0.002 3 0.225 0
    注:“—”表示元素质量浓度低于检出限.
    下载: 导出CSV
  • [1] RESANO M, FLÓREZ M R, QUERALT I, et al. Determination of palladium, platinum and rhodium in used automobile catalysts and active pharmaceutical ingredients using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis[J]. Spectrochimica Acta B, 2015, 105: 38-46. doi: 10.1016/j.sab.2014.09.013
    [2] BALARAM V. Recent advances in the determination of elemental impurities in pharmaceuticals-status, challenges and moving frontiers[J]. TRAC-Trends in Analytical Chemistry, 2016, 80: 83-95. doi: 10.1016/j.trac.2016.02.001
    [3] BARIN J S, MELLO P A, MESKO M F, et al. Determination of elemental impurities in pharmaceutical products and related matrices by ICP-based methods: a review[J]. Analytical and Bioanalytical Chemistry, 2016, 408(17): 4547-4566. doi: 10.1007/s00216-016-9471-6
    [4] LEWEN N. The use of atomic spectroscopy in the pharmaceutical industry for the determination of trace elements in pharmaceuticals[J]. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55(4): 653-661. doi: 10.1016/j.jpba.2010.11.030
    [5] PLUHÁČEK T, RUČKA M, MAIER V. A direct LA-ICP-MS screening of elemental impurities in pharmaceutical products in compliance with USP and ICH-Q3D[J]. Analytica Chimica Acta, 2019, 1078: 1-7. doi: 10.1016/j.aca.2019.06.004
    [6] MENOUTIS J, PARISI A, VERMA N. Study of the use of axial viewed inductively coupled plasma atomic emission spectrometry with ultrasonic nebulization for the determination of select elemental impurities in oral drug products[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 152: 12-16. doi: 10.1016/j.jpba.2018.01.008
    [7] PINHEIRO F C, BARROS A I, NÓBREGA J A. Evaluation of dilute-and-shoot procedure for determination of inorganic impurities in liquid pharmaceutical samples by ICP OES[J]. Microchemical Journal, 2019, 146: 948-956. doi: 10.1016/j.microc.2019.02.021
    [8] NAM K H, ISENSEE R, INFANTINO G, et al. Microwave-induced combustion for ICP-MS: a generic approach to trace elemental analyses of pharmaceutical products[J]. Spectroscopy, 2011, 26(4): 36-41.
    [9] BARIN J S, TISCHER B, PICOLOTO R S, et al. Determination of toxic elements in tricyclic active pharmaceutical ingredients by ICP-MS: a critical study of digestion methods[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(2): 352-358. doi: 10.1039/c3ja50334h
    [10] DE MENEZES M N, DE MARCO B A, FIORENTINO F A M, et al. Flucloxacillin: a review of characteristics, properties and analytical methods[J]. Critical Reviews in Analytical Chemistry, 2019, 49(1): 67-77. doi: 10.1080/10408347.2018.1468728
    [11] MULLER A L H, OLIVEIRA J S S, MELLO P A, et al. Study and determination of elemental impurities by ICP-MS in active pharmaceutical ingredients using single reaction chamber digestion in compliance with USP requirements[J]. Talanta, 2015, 136: 161-169. doi: 10.1016/j.talanta.2014.12.023
    [12] NÓBREGA J A, PIROLA C, FIALHO L L, et al. Microwave-assisted digestion of organic samples: how simple can it become?[J] Talanta, 2012, 98: 272-276. doi: 10.1016/j.talanta.2012.06.079
    [13] PINHEIRO F C, BARROS A I, NÓBREGA J A. Microwave-assisted sample preparation of medicines for determination of elemental impurities in compliance with United States Pharmacopeia: how simple can it be?[J]. Analytica Chimica Acta, 2019, 1065: 1-11. doi: 10.1016/j.aca.2019.03.016
    [14] 杨捷, 叶启亮, 张虹, 等. 多晶硅材料消解方法的探究[J]. 华南师范大学学报(自然科学版), 2016, 48(3): 97-101. http://journal-n.scnu.edu.cn/article/id/3899

    YANG J, YE Q L, ZHANG H, et al. Digestion method of polysilicon[J]. Journal of South China Normal University(Natural Science Edition), 2016, 48(3): 97-101. http://journal-n.scnu.edu.cn/article/id/3899
    [15] BRENNER I B, ZANDER A T. Axially and radially viewed inductively coupled plasmas: a critical review[J]. Spectrochimica Acta B, 2000, 55(8): 1195-1240. doi: 10.1016/S0584-8547(00)00243-3
    [16] Elemental Impurities-Procedures<233>USP40-NF35[S]. The United States Pharmacopeial Convention, 2017-05-01.
  • 加载中
图(1) / 表(6)
计量
  • 文章访问数:  466
  • HTML全文浏览量:  136
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-12
  • 网络出版日期:  2021-03-24
  • 刊出日期:  2021-02-25

目录

    /

    返回文章
    返回