留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SnO2(110)表面In掺杂对NO2气敏吸附性能提升的理论研究

刘玉亭 徐超 顾凤龙

刘玉亭, 徐超, 顾凤龙. SnO2(110)表面In掺杂对NO2气敏吸附性能提升的理论研究[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 16-22. doi: 10.6054/j.jscnun.2021003
引用本文: 刘玉亭, 徐超, 顾凤龙. SnO2(110)表面In掺杂对NO2气敏吸附性能提升的理论研究[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 16-22. doi: 10.6054/j.jscnun.2021003
LIU Yuting, XU Chao, GU Fenglong. A Theoretical Study of the Enhancement of NO2 Sensing and Adsoption on Indium-Doped SnO2(110) Surface[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(1): 16-22. doi: 10.6054/j.jscnun.2021003
Citation: LIU Yuting, XU Chao, GU Fenglong. A Theoretical Study of the Enhancement of NO2 Sensing and Adsoption on Indium-Doped SnO2(110) Surface[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(1): 16-22. doi: 10.6054/j.jscnun.2021003

SnO2(110)表面In掺杂对NO2气敏吸附性能提升的理论研究

doi: 10.6054/j.jscnun.2021003
基金项目: 

国家自然科学基金项目 21673085

广东省自然科学基金项目 2018A030310660

中山大学广东省计算科学重点实验室开放基金项目 2018011

详细信息
    通讯作者:

    徐超,Email: chaoxu@m.scnu.edu.cn

    顾凤龙,Email: gu@scnu.edu.cn

  • 中图分类号: O64

A Theoretical Study of the Enhancement of NO2 Sensing and Adsoption on Indium-Doped SnO2(110) Surface

  • 摘要: 为了阐明In的掺杂能提高SnO2(110)表面气敏性能的反应机制,采用密度泛函理论研究了NO2分子在In掺杂SnO2(110)表面的吸附行为. 计算结果表明:In的掺杂可以提高材料表面的导电性,形成具有氧空位的缺陷表面,有利于发生活性氧在表面的预吸附过程. 掺杂的In5c/SnO2(110)表面对NO2表现出良好的吸附性,对NO2气体的选择性和灵敏度提高的主要原因是In掺杂后氧空位缺陷表面的形成. 此外,活性氧物种的预吸附对材料表面气敏性能的影响取决于NO2在材料表面的具体吸附位点,其中Sn5c位点的吸附促使电荷从表面转移到气体分子,导致表面电阻的增大以及氧空位的产生,从而表现出优异的气敏吸附性能.
  • 图  1  In掺杂前后SnO2(110)表面的结构

    Figure  1.  The structure of SnO2(110) surface before and after In doping

    图  2  In掺杂前后SnO2(110)表面的态密度

    Figure  2.  The density states of SnO2(110) surface before and after In doping

    图  3  In5c/SnO2(110)表面的差分电荷密度

    Figure  3.  The difference in charge density on In5c/SnO2(110) surface

    图  4  预吸附O的In5c/SnO2(110)表面差分电荷密度

    Figure  4.  The difference in charge density on In5c/SnO2(110) surface with pre-adsorbed O

    图  5  NO2在In5c/SnO2(110)表面的吸附结构

    Figure  5.  The adsorption structure of NO2 on the defect of In5c/SnO2(110)

    图  6  NO2在具有Ob空位的In5c/SnO2(110)缺陷表面的吸附结构

    Figure  6.  The adsorption structure of NO2 on the defect surface of In5c/SnO2(110) with Ob vacancy

    图  7  NO2在预吸附O的In5c/SnO2(110)表面的吸附结构

    Figure  7.  The adsorption structure of NO2 on the surface of In5c/SnO2(110) with pre-adsorbed O

    表  1  活性氧物种(O2和O)在In掺杂前后SnO2(110)表面不同位点的吸附能(Ea)

    Table  1.   The adsorption energy (Ea) of O2 and O at different positions of SnO2(110) surface before and after In doping   eV

    吸附位点 O2 O
    Ea(1) Ea(2) Ea(1) Ea(2)
    Ob 0.02 0.36 2.84 2.42
    Op -0.03 0.43 1.57 2.18
    Sn5c -0.07 -0.09 1.68 1.62
    Sn6c -0.02 0.01 1.54 0.06
    In5c -0.05 2.58
    注:(1)代表SnO2(110)表面;(2)代表In5c/SnO2(110)表面.
    下载: 导出CSV

    表  2  NO2在In掺杂前后SnO2(110)表面不同位点的吸附能

    Table  2.   The adsorption energy of NO2 at different positions of SnO2(110) surface before and after In doping

    吸附位点 Ea(1)/eV Ea(2)/eV
    Ob -0.02 -1.62
    Op -0.38 -0.53
    Sn5c -0.47 -1.89
    Sn6c -0.01 -1.61
    In5c -0.21
    注:(1)代表SnO2(110)表面;(2)代表In5c/SnO2(110)表面.
    下载: 导出CSV

    表  3  NO2在存在Ob空位和预吸附O的In5c/SnO2(110)表面不同位点的吸附能(Ea)

    Table  3.   The adsorption energy of NO2 at different positions on the surface of In5c/SnO2(110) with Ob vacancy and pre-adsorbed O   eV

    吸附位点 Ea(1) Ea(2)
    Ob -0.13 -0.80
    Op -0.10 -1.13
    Sn5c -0.93 -0.72
    Sn6c -1.13 -0.80
    In5c -0.18 -1.11
    Opre -1.24
    注:(1)代表存在Ob空位的In5c/SnO2(110)表面;(2)代表预吸附O的In5c/SnO2(110)表面. Opre为表面上预吸附的O原子.
    下载: 导出CSV
  • [1] HUANG B, ZHAO F, FISHMAN T, et al. Building material use and associated environmental impacts in China 2000—2015[J]. Environmental Science & Technology, 2018, 52(23): 14006-14014. http://www.researchgate.net/publication/328840830_Building_Material_Use_and_Associated_Environmental_Impacts_in_China_2000-2015
    [2] ANDRINGA A M, PILIEGO C, KATSOURAS I, et al. NO2 detection and real-time sensing with field-effect transistors[J]. Chemistry of Materials, 2014, 26(1): 773-785. doi: 10.1021/cm4020628
    [3] ZHANG D, LIU Z, LI C, et al. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices[J]. Nano Letters, 2004, 4(10): 1919-1924. doi: 10.1021/nl0489283
    [4] HESTERBERG T W, BUNN W B, MCCLELLAN R O, et al. Critical review of the human data on short-term nitrogen dioxide (NO2) exposures: evidence for NO2 no-effect levels[J]. Critical Reviews in Toxicology, 2009, 39(9): 743-781. doi: 10.3109/10408440903294945
    [5] BOOK S A. Scaling toxicity from laboratory animals to people: an example with nitrogen dioxide[J]. Journal of Toxicology & Environmental Health, 1982, 9(5/6): 719-725. http://www.ncbi.nlm.nih.gov/pubmed/7120506
    [6] 姜如青, 欧阳剑, 杨辉, 等. In、Ga掺杂SnO2的第一性原理研究[J]. 华南师范大学学报(自然科学版), 2017, 49(3): 1-6. http://journal-n.scnu.edu.cn/article/id/3815

    JIANG R Q, OUYANG J, YANG H, et al. First-principles investigations of the electronic structures and optical properties of SnO2 with In and Ga defects[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(3): 1-6. http://journal-n.scnu.edu.cn/article/id/3815
    [7] SHARMA A, TOMAR M, GUPTA V. SnO2 thin film sensor with enhanced response for NO2 gas at lower temperatures[J]. Sensors and Actuators B: Chemical, 2011, 156(2): 743-752. doi: 10.1016/j.snb.2011.02.033
    [8] ZHU X, GUO Y, REN H, et al. Enhancing the NO2 gas sensing properties of rGO/SnO2 nanocomposite films by using microporous substrates[J]. Sensors and Actuators B: Chemical, 2017, 248: 560-570. doi: 10.1016/j.snb.2017.04.030
    [9] WANG T, HAO J, ZHENG S, et al. Highly sensitive and rapidly responding room-temperature NO2 gas sensors based on WO3 nanorods/sulfonated graphene nanocomposites[J]. Nano Research, 2018, 11(2): 791-803. doi: 10.1007/s12274-017-1688-y
    [10] GAO L, CHENG Z, XIANG Q, et al. Porous corundum-type In2O3 nanosheets: synthesis and NO2 sensing properties[J]. Sensors and Actuators B: Chemical, 2015, 208: 436-443. doi: 10.1016/j.snb.2014.11.053
    [11] CHOU P C, CHEN H I, LIU I P, et al. Nitrogen oxide (NO2) gas sensing performance of ZnO nanoparticles (NPs)/sapphire-based sensors[J]. IEEE Sensors Journal, 2015, 15(7): 3759-3763. doi: 10.1109/JSEN.2015.2391271
    [12] WEI W, DAI Y, HUANG B. Role of Cu doping in SnO2 sensing properties toward H2S[J]. The Journal of Physical Chemistry C, 2011, 115(38): 18597-18602. doi: 10.1021/jp204170j
    [13] LI S, LU Z, YANG Z, et al. The sensing mechanism of Pt-doped SnO2 surface toward CO: a first-principle study[J]. Sensors and Actuators B: Chemical, 2014, 202: 83-92. doi: 10.1016/j.snb.2014.05.071
    [14] WANG P, HUI J, YUAN T, et al. Ultrafine nanoparticles of W-doped SnO2 for durable H2S sensors with fast response and recovery[J]. RSC Advances, 2019, 9(20): 11046-11053. doi: 10.1039/C9RA00944B
    [15] KIM H J, LEE J H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview[J]. Sensors and Actuators B: Chemical, 2014, 192: 607-627. doi: 10.1016/j.snb.2013.11.005
    [16] WANG Z, ZHANG Y, LIU S, et al. Preparation of Ag nanoparticles-SnO2 nanoparticles-reduced graphene oxide hybrids and their application for detection of NO2 at room temperature[J]. Sensors and Actuators B: Chemical, 2016, 222: 893-903. doi: 10.1016/j.snb.2015.09.027
    [17] MCCUE J T, YING J Y. SnO2-In2O3 nanocomposites as semiconductor gas sensors for CO and NOx detection[J]. Chemistry of Materials, 2007, 19(5): 1009-1015. doi: 10.1021/cm0617283
    [18] KAUR J, KUMAR R, BHATNAGAR M C. Effect of indium-doped SnO2 nanoparticles on NO2 gas sensing properties[J]. Sensors and Actuators B: Chemical, 2007, 126(2): 478-484. doi: 10.1016/j.snb.2007.03.033
    [19] CUI S, WEN Z, MATTSON E C, et al. Indium-doped SnO2 nanoparticle-graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2[J]. Journal of Materials Chemistry A, 2013, 1(14): 4462-4467. doi: 10.1039/c3ta01673k
    [20] WANG X F, MA W, SUN K M, et al. Sensing mechanism of SnO2 (110) surface to NO2: density functional theory calculations[J]. Materials Science Forum, 2017, 898: 1947-1959. doi: 10.4028/www.scientific.net/MSF.898.1947
    [21] KRESSE G, FURTHMVLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. doi: 10.1016/0927-0256(96)00008-0
    [22] HAFNER J. Ab-initio simulations of materials using VASP: density-functional theory and beyond[J]. Journal of Computational Chemistry, 2008, 29(13): 2044-2078. doi: 10.1002/jcc.21057
    [23] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [24] CHADI D J. Special points for brillouin-zone integrations[J]. Physical Review B, 1977, 16(4): 1746-1747. doi: 10.1103/PhysRevB.16.1746
    [25] SINGH A K, JANOTTI A, SCHEFFLER M, et al. Sources of electrical conductivity in SnO2[J]. Physical Review Letters, 2008, 101(5): 055502/1-4. http://www.ncbi.nlm.nih.gov/pubmed/18764405
    [26] GARSHEV A V, IVANOV V K, KROTOVA A A, et al. Enhancement of lewis acidity of Cr-doped nanocrystalline SnO2: effect on surface NH3 oxidation and sensory detection pattern[J]. ChemPhysChem, 2019, 20(15): 1985-1996. doi: 10.1002/cphc.201900192
    [27] HENKELMAN G, ARNALDSSON A, JÓNSSON H. A fast and robust algorithm for bader decomposition of charge density[J]. Computational Materials Science, 2006, 36(3): 354-360. doi: 10.1016/j.commatsci.2005.04.010
    [28] TANG W, SANVILLE E, HENKELMAN G. A grid-based bader analysis algorithm without lattice bias[J]. Journal of Physics: Condensed Matter, 2009, 21(8): 84204-84204. doi: 10.1088/0953-8984/21/8/084204
    [29] MAENG S, KIM S W, LEE D H, et al. SnO2 nano-slab as NO2 sensor: identification of the NO2 sensing mechanism on a SnO2 surface[J]. ACS Applied Materials & Interfaces, 2013, 6(1): 357-363. http://europepmc.org/abstract/med/24309131
    [30] WANG Z, ZHANG T, HAN T, et al. Oxygen vacancy engineering for enhanced sensing performances: a case of SnO2 nanoparticles-reduced graphene oxide hybrids for ultrasensitive ppb-level room-temperature NO2 sensing[J]. Sensors and Actuators B: Chemical, 2018, 266: 812-822. doi: 10.1016/j.snb.2018.03.169
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  408
  • HTML全文浏览量:  160
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-04
  • 网络出版日期:  2021-03-24
  • 刊出日期:  2021-02-25

目录

    /

    返回文章
    返回