留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于偏振态颜色编码的晶体应力双折射成像

王永松 林嘉怡 巫婕妤 吴泳波 唐志列

王永松, 林嘉怡, 巫婕妤, 吴泳波, 唐志列. 基于偏振态颜色编码的晶体应力双折射成像[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 6-15. doi: 10.6054/j.jscnun.2021002
引用本文: 王永松, 林嘉怡, 巫婕妤, 吴泳波, 唐志列. 基于偏振态颜色编码的晶体应力双折射成像[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 6-15. doi: 10.6054/j.jscnun.2021002
WANG Yongsong, LIN Jiayi, WU Jieyu, WU Yongbo, TANG Zhilie. Imaging of Crystal Stress Birefringence Based on Color Coding of Polarization State[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(1): 6-15. doi: 10.6054/j.jscnun.2021002
Citation: WANG Yongsong, LIN Jiayi, WU Jieyu, WU Yongbo, TANG Zhilie. Imaging of Crystal Stress Birefringence Based on Color Coding of Polarization State[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(1): 6-15. doi: 10.6054/j.jscnun.2021002

基于偏振态颜色编码的晶体应力双折射成像

doi: 10.6054/j.jscnun.2021002
基金项目: 

国家自然科学基金项目 61575067

详细信息
    通讯作者:

    唐志列,Email: tangzhl@scnu.edu.cn

  • 中图分类号: O436.3

Imaging of Crystal Stress Birefringence Based on Color Coding of Polarization State

  • 摘要: 提出了一种基于双线偏振CCD-全Stokes参量测量的偏振态色度成像新方法. 通过分焦面Stokes参量测量与RGB颜色编码相结合,设计并研制了基于双线偏振CCD-全Stokes参量测量的偏振态色度成像系统. 利用该系统,获得了晶体模型应力双折射分布的偏振态色度图像,并与传统的光弹性应力测量法进行了比较,偏振态色度成像法不仅可以较高精度地测量应力双折射率,还可以测量其方向分布. 基于偏振态色度成像法的独特优势,结合共焦显微成像技术,对具有双折射效应的单层Sr2TiSi2O8微晶进行了偏振态色度成像的研究. 结果表明:所提方法能够在一幅图中直观地反映物体的全部特征信息,有效地辨别由于晶体内部结构排列不同而导致的双折射特性差异,还可以通过观察微晶生长过程中双折射特性的变化,获取微晶的生长取向等相关信息. 研究结果为功能型微晶材料生长过程的动力学行为研究提供一种简单、有效的可视化方法.
  • 图  1  偏振态在邦加球表面的颜色编码

    注:箭头表示几种特定的偏振态.

    Figure  1.  The color coding of the polarization state on the surface of Poincare sphere

    图  2  双线偏振CCD-全Stokes参量测量的原理图

    Figure  2.  The schematic diagram of double linear polarization CCD-full stokes parameter measurement

    图  3  对应表 1偏振态色度连续周期性变化

    Figure  3.  The continuous periodic change of the polarization state chromaticity in Table 1

    图  4  不同波片的测量结果

    Figure  4.  The measurement results with different wave plates

    图  5  有机玻璃模型动态应力双折射率成像结果中的相位延迟角分布

    Figure  5.  The phase retardation distribution in the dynamic stress birefringence imaging of the organic glass mode

    图  6  样品水平中线位置各点的应力双折射率分布曲线

    Figure  6.  The distribution curve of stress birefringence at the horizontal center line of the sample

    图  7  有机玻璃模型受动态应力情况下的快轴方位角分布

    Figure  7.  The distribution of fast axis azimuth with the dynamic stress of the organic glass mode

    图  8  实际快轴方位角的分布及偏振态色度成像

    Figure  8.  The distribution of fast axis azimuth and the images of polarization chromaticity

    图  9  样品红线位置各点的快轴方位角分布曲线

    Figure  9.  The distribution curve of fast axis azimuth at the red line of the sample

    图  10  微晶样品的测量结果

    (A)光学显微镜照片;(B)A图局部放大图;(C)快轴方位角图像;(D)起偏器与检偏器正交偏振图像; (E)相位延迟图像;(F)偏振态色度图像

    Figure  10.  The results of microcrystalline measurement

    表  1  出射光的偏振态色度和Stokes参量理论值与测量值对比表

    Table  1.   The polarization state chromaticity of the outgoing light and the comparison between the theoretical and the measured Stokes parameter values

    旋转偏振片角度/(°) 偏振态色度DPC(R, G, B) 理论值 测量值
    S1 S2 S3 S1 S2 S3
    0 1.00 0 0 0.99 0.01 0.03
    10 0.94 0 -0.34 0.93 0.03 -0.33
    20 0.77 0 -0.64 0.73 0.05 -0.64
    30 0.50 0 -0.87 0.45 0.06 -0.89
    40 0.17 0 -0.98 0.11 0.02 -1.02
    50 -0.17 0 -0.98 -0.23 0.01 -1.01
    60 -0.50 0 -0.87 -0.55 0.03 -0.89
    70 -0.77 0 -0.64 -0.80 0.04 -0.64
    80 -0.94 0 -0.34 -0.95 0.02 -0.34
    90 -1.00 0 0 -0.99 0.01 0
    100 -0.94 0 0.34 -0.93 -0.01 0.33
    110 -0.77 0 0.64 -0.77 -0.02 0.64
    120 -0.50 0 0.87 -0.52 -0.03 0.88
    130 -0.17 0 0.98 -0.21 -0.02 1.02
    140 0.17 0 0.98 0.13 -0.01 1.03
    150 0.50 0 0.87 0.46 0.06 0.92
    160 0.77 0 0.64 0.74 0.05 0.70
    170 0.94 0 0.34 0.92 0.03 0.40
    180 1.00 0 0 0.99 0.01 0.06
    注:DPC为偏振态色度.
    下载: 导出CSV
  • [1] WANG C H, QIN P W, LV D H, et al. Characterization of anisotropy of the porous anodic alumina by the Mueller matrix imaging method[J]. Optics Express, 2020, 28(5): 6740-6754. doi: 10.1364/OE.380070
    [2] 杨新萍. X射线衍射技术的发展和应用[J]. 山西师范大学学报(自然科学版), 2007, 21(1): 72-76. doi: 10.3969/j.issn.1009-4490.2007.01.019

    YANG X P. The development and application of X-ray diffraction[J]. Journal of Shanxi Normal University(Natural Science Edition), 2007, 21(1): 72-76. doi: 10.3969/j.issn.1009-4490.2007.01.019
    [3] 王文, 徐涛, 孙立涛. 原位液体环境透射电镜技术在纳米晶体结构研究中的应用[J]. 电子显微学报, 2018, 37(5): 500-512. doi: 10.3969/j.issn.1000-6281.2018.05.015

    WANG W, XU T, SUN L T. Applications of in situ liquid environment transmission electron microscopy in nanocrystal structure investigations[J]. Journal of Chinese Electron Microscopy Society, 2018, 37(5): 500-512. doi: 10.3969/j.issn.1000-6281.2018.05.015
    [4] FREUDENTHAL J, GUNN E, KAHR B. Imaging chiroptical artifacts[J]. Chirality, 2009, 21: 20-27. doi: 10.1002/chir.20768
    [5] MAZUMDER N, XIANG L Y, QIU J J, et al. Investigating starch gelatinization through stokes vector resolved second harmonic generation microscopy[J]. Scientific Reports, 2017, 7: 45816/1-8. http://www.nature.com/articles/srep46803/
    [6] KIHARA T. A Study of Stress analysis for a residual stress model by digital photoelasticity[J]. Applied Mechanics and Materials, 2008, 13/14: 59-64. doi: 10.4028/www.scientific.net/AMM.13-14.59
    [7] 程北, 张雪杰, 刘诚, 等. 基于衍射重建叠层相位恢复术的平面偏振双折射测量[J]. 中国激光, 2019, 46(12): 1204003/1-7.

    CHENG B, ZHANG X J, LIU C, et al. Birefringence mea-surement based on ptychgraphic iteratice engine in planar polarimeter[J]. Chinese Journal of Lasers, 2019, 46(12): 1204003/1-7.
    [8] 常闪闪, 麻云凤, 廖利芬, 等. 旋转样品消光比的测试方法[J]. 激光与光电子学进展, 2019, 56(12): 121202/1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201912016.htm

    CHANG S S, MA Y F, LIAO L F, et al. Testing method of extinction ratio based on rotating sample[J]. Laser & Optoelectronics Progress, 2019, 56(12): 121202/1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201912016.htm
    [9] 张伟, 朱秋东, 张旭升. 平板玻璃中部应力的偏振移相检测法[J]. 光学学报, 2018, 38(4): 0426001/1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201804041.htm

    ZHANG W, ZHU Q D, ZHANG X S. Polarization phase-shifting detection method for central stress in flat glass[J]. Acta Optica Sinica, 2018, 38(4): 0426001/1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201804041.htm
    [10] 肖昊苏, 张运强, 范志刚, 等. 偏振干涉法测量晶体应力双折射精度分析[J]. 红外与激光工程, 2011, 40(2): 271-276. doi: 10.3969/j.issn.1007-2276.2011.02.020

    XIAO H S, ZHANG Y Q, FAN Z G, et al. Precision analysis of polarization interference method for measuring stress birefringence of crystal[J]. Infrared and Laser Engineering, 2011, 40(2): 271-276. doi: 10.3969/j.issn.1007-2276.2011.02.020
    [11] 李春艳, 吴易明, 高立民, 等. 磁光调制法测量玻璃内应力[J]. 红外与激光工程, 2015, 44(3): 911-916. doi: 10.3969/j.issn.1007-2276.2015.03.023

    LI C Y, WU Y M, GAO L M, et al. Magneto-optical modulation measurement method of glass internal stress[J]. Infrared and Laser Engineering, 2015, 44(3): 911-916. doi: 10.3969/j.issn.1007-2276.2015.03.023
    [12] 李长胜. 旋光-电光晶体的电光调制特性及π-电压[J]. 光学学报, 2019, 39(6): 0623001/1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201906036.htm

    LI C S. Electro-optic modulation characteristics of optically active and electro-optical crystal and its π-voltage[J]. Acta Optica Sinica, 2019, 39(6): 0623001/1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201906036.htm
    [13] 马剑涛, 吴泳波, 许伟鑫, 等. 基于磁光调制的光弹性应力快速测量方法[J]. 物理实验, 2017, 37(12): 45-49. doi: 10.3969/j.issn.1005-4642.2017.12.016

    MA J T, WU Y B, XU W X, et al. Fast measurement of photoelastic stress based on magneto-optical modulation[J]. Physics Experimentation, 2017, 37(12): 45-49. doi: 10.3969/j.issn.1005-4642.2017.12.016
    [14] KIHARA T. Measurement method of Stokes parameters using a quarter-wave plate with phase difference errors[J]. Applied Optics, 2011, 50(17): 2582-2587. doi: 10.1364/AO.50.002582
    [15] 李志诚, 陈萍, 陈飞虎, 等. 基于斯托克斯参量的光弹性应力分布及成像方法研究[J]. 光学学报, 2012, 32(5): 0512005/1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201205015.htm

    LI Z C, CHEN P, CHEN F H, et al. Study of photoelastic stress distribution and imaging method based on stokes parameters[J]. Acta Optica Sinica, 2012, 32(5): 0512005/1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201205015.htm
    [16] KETARA M E, BREUGNOT S. Imaging through haze using multispectral polarization imaging method[C]//SPIE Proceeding of the Polarization: Measurement, Analysis, and Remote Sensing XⅢ. Orlando: International Society for Optical Engineering (SPIE), 2018.
    [17] SPANDANA K U, MAHATO K K, MAZUMDER N. Polarization-resolved Stokes-Mueller imaging: a review of technology and applications[J]. Lasers in Medical Science, 2019, 34: 1283-1293. doi: 10.1007/s10103-019-02752-1
    [18] WOOD M F G, GHOSH N, WALLENBURG M A, et al. Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues[J]. Journal Biomedical Optics, 2010, 15(4): 047009/1-9. http://europepmc.org/abstract/med/20799840
    [19] DONG Y, QI J, HE H, et al. Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope[J]. Biomedical Optics Express, 2017, 8(8): 3643-3655. doi: 10.1364/BOE.8.003643
    [20] CHEN D, ZENG N, XIE Q, et al. Mueller matrix polarimetry for characterizing microstructural variation of nude mouse skin during tissue optical clearing[J]. Biomedical Optics Express, 2017, 8(8): 3559-3570. doi: 10.1364/BOE.8.003559
    [21] CHAKRABORTY I, PALLEN S, SHETTY Y, et al. Advanced microscopy techniques for revealing molecular structure of starch granules[J]. Biophysical Reviews, 2020, 12: 105-122. doi: 10.1007/s12551-020-00614-7
    [22] TANG P J, XU J J, WANG R K. Imaging and visualization of the polarization state of the probing beam in polarization-sensitive optical coherence tomography[J]. Applied Physics Letters, 2018, 113(23): 231101/1-5. http://www.researchgate.net/publication/329384602_Imaging_and_visualization_of_the_polarization_state_of_the_probing_beam_in_polarization-sensitive_optical_coherence_tomography
    [23] CHEN Z H, YAO Y, ZHU Y H, et al. Removing the dichroism and retardance artifacts in a collinear backscatte-ring Mueller matrix imaging system[J]. Optics Express, 2018, 26(22): 28288-28301. doi: 10.1364/OE.26.028288
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  505
  • HTML全文浏览量:  157
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-27
  • 网络出版日期:  2021-03-24
  • 刊出日期:  2021-02-25

目录

    /

    返回文章
    返回