留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适用于射频能量收集系统的新型宽带整流电路设计

刘建 张明华

刘建, 张明华. 适用于射频能量收集系统的新型宽带整流电路设计[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 1-5. doi: 10.6054/j.jscnun.2021001
引用本文: 刘建, 张明华. 适用于射频能量收集系统的新型宽带整流电路设计[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 1-5. doi: 10.6054/j.jscnun.2021001
LIU Jian, ZHANG Minghua. The Design of A Novel Broadband Rectifier for Radio Frequency Energy Harvesting System[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(1): 1-5. doi: 10.6054/j.jscnun.2021001
Citation: LIU Jian, ZHANG Minghua. The Design of A Novel Broadband Rectifier for Radio Frequency Energy Harvesting System[J]. Journal of South China normal University (Natural Science Edition), 2021, 53(1): 1-5. doi: 10.6054/j.jscnun.2021001

适用于射频能量收集系统的新型宽带整流电路设计

doi: 10.6054/j.jscnun.2021001
基金项目: 

国家自然科学基金项目 61901181

详细信息
    通讯作者:

    刘建,Email: lixz1987@163.com

  • 中图分类号: O631

The Design of A Novel Broadband Rectifier for Radio Frequency Energy Harvesting System

  • 摘要: 提出了一种适用于射频能量收集(RFEH)系统的宽带小型化整流电路. 整流二极管采用HSMS 2862肖特基二极管,设计了倍压结构的整流电路. 所设计的整流电路具有结构紧凑和复杂度低的优势. 通过仿真与测试对整流电路的性能进行验证. 结果表明:当输入功率为14.8 dBm时,该整流电路在1.91~3.32 GHz (分数带宽为53.9%)频带范围内功率转换效率(PCE)均大于50%;在2.2 GHz频点处,整流电路取得了74.2%的最大功率转换效率.
  • 图  1  提出的宽带整流电路原理图及其版图

    Figure  1.  The schematic and layout images of the proposed broadband rectifier

    图  2  所提宽带整流电路照片

    Figure  2.  The photograph of the proposed broadband rectifier

    图  3  整流电路测试系统

    Figure  3.  The measurement setup

    图  4  效率及输出电压随频率的变化

    Figure  4.  The change of the efficiency and output voltage with the frequency

    图  5  输入回波损耗随频率的变化

    Figure  5.  The change of input return loss with the frequency

    图  6  整流电路在1.80 GHz处的效率与输出电压随输入功率的变化

    Figure  6.  The change of the efficiency and output voltage with the input power at 1.80 GHz

    图  7  在2.10 GHz处效率及输出电压随输入功率的变化

    Figure  7.  The change of the efficiency and output voltage with the input power at 2.10 GHz

    图  8  在2.45 GHz处效率及输出电压随输入功率的变化

    Figure  8.  The change of the efficiency and output voltage with the input power at 2.45 GHz

    表  1  微带线的尺寸

    Table  1.   The dimensions of the microstrip line   mm

    微带线 微带线
    TL1 2.1 4.0 TL6 2.1 3.0
    TL2 2.1 12.0 TL7 2.1 4.0
    TL3 2.1 8.5 TL8 2.1 9.1
    TL4 2.1 3.0 TL9 2.1 4.0
    TL5 2.1 5.0
    下载: 导出CSV

    表  2  与其他器件的性能对比

    Table  2.   The comparison of performance with other devices

    参考文献 输入功率/dBm 最大效率/% 工作频带/GHz 相对带宽/% 电路尺寸/mm
    [14] -10 55 1.8~2.5 32.5 32×32
    [15] 17.2 80.8 1.86~2.65 35.0 190.1×64.2
    [16] 10 0.47~0.86 58.6 187×10
    [17] 22 80.3 2.2~3.4 42.8 100×32
    [18] 10 1.75~3.55 67.9 25×35
    本文 14.8 74.3 1.91~3.32 53.9 32×15
    注:“—”表示未见报道.
    下载: 导出CSV
  • [1] 刘丹洋, 闫娜, 闵昊. 一种带有最大能量跟踪的宽动态范围射频能量收集电路的设计[J]. 复旦学报, 2019, 58(4): 433-440. https://www.cnki.com.cn/Article/CJFDTOTAL-FDXB201904004.htm

    LIU D Y, YAN N, MIN H. Design of a wide-dynamic-range RF energy tracking technique[J]. Journal of Fudan University, 2019, 58(4): 433-440. https://www.cnki.com.cn/Article/CJFDTOTAL-FDXB201904004.htm
    [2] SANGKIL K, RUSHI V, JO B. Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms[J]. Proceedings of the IEEE, 2014, 102(11): 1649-1666. doi: 10.1109/JPROC.2014.2357031
    [3] ZHANG H, GUO Y X, ZHONG Z, et al. Cooperative integration of RF energy harvesting and dedicated WPT for wireless sensor networks[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(4): 291-293. doi: 10.1109/LMWC.2019.2902047
    [4] MUNCUK U, ALEMDAR K, SARODE J D, et al. Multiband ambient RF energy harvesting circuit design for enabling battery-less sensors and IoT[J]. IEEE Internet of Things Journal, 2018, 5(4): 2700-2714. doi: 10.1109/JIOT.2018.2813162
    [5] HOU Z W, CHEN H, LI Y H, et al. Incentive mechanism design for wireless energy harvesting-based internet of things[J]. IEEE Internet of Things Journal, 2018, 5(4): 2620-2632. doi: 10.1109/JIOT.2017.2786705
    [6] LIU J X, XIONG K, FAN P Y, et al. RF energy harvesting wireless powered sensor networks for smart cities[J]. IEEE Access, 2017, 5: 9348-9358. doi: 10.1109/ACCESS.2017.2703847
    [7] BITO J, BAHR R, HESTER J G, et al. A novel solar and electromagnetic energy harvesting system with a 3-D printed package for energy efficient Internet-of-Things wireless sensors[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1831-1842. doi: 10.1109/TMTT.2017.2660487
    [8] MOKWA W, SCHNAKENBERG U. Micro-transponder systems for medical applications[J]. IEEE Transactions on Instrumentation and Measurement, 2001, 50(6): 1551-1555. doi: 10.1109/19.982943
    [9] KIYOYAMA K, TANAKA Y, ONODA M, et al. A closed-loop power control function for bio-implantable devices[C]//Asian Solid-State Circuits Conference. Fukuoka: IEEE, 2008.
    [10] ROTENGERG S A, PODILCHAK S K, RE P D H, et al. Efficient rectifier for wireless power transmission systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(5): 1921-1932. doi: 10.1109/TMTT.2020.2968055
    [11] ABDUL B, HYOUNGSUK Y. Efficient wireless power transfer system with a miniaturized quad-band implantable antenna for deep-body multitasking implants[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(5): 1-11. doi: 10.1109/TMTT.2020.2989039
    [12] SONG C Y, HUANG Y, ZHOU J F. Matching network elimination in broadband rectennas for high efficiency wireless power transfer and energy harvesting[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 3950-3961. doi: 10.1109/TIE.2016.2645505
    [13] SONG C Y, HUANG Y, ZHOU J F. A high-efficiency broadband rectenna for ambient wireless energy harvesting[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(8): 3486-3495. doi: 10.1109/TAP.2015.2431719
    [14] ZHANG X Y, DU Z X, XUE Q. High-efficiency broadband rectifier with wide ranges of input power and output load based on branch-line coupler[J]. IEEE Transactions on Circuits and Systems, 2017, 64(3): 731-739. doi: 10.1109/TCSI.2016.2614331
    [15] KIMIONIS J, COLLADO A, TENTZERIS M M. Octave and decade printed UWB rectifiers based on non-uniform tran-smission lines for energy harvesting[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(11): 4326-4334. doi: 10.1109/TMTT.2017.2697851
    [16] LI L F, YANG X X, LIU E J. A broadband high-efficiency rectifier based on two-level impedance matching network[J]. Progress in Electromagnetics Research Letters, 2018, 72: 91-97. doi: 10.2528/PIERL17103002
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  419
  • HTML全文浏览量:  199
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-10
  • 网络出版日期:  2021-03-24
  • 刊出日期:  2021-02-25

目录

    /

    返回文章
    返回