留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于格的两轮多重签名方案

姜玫 马昌社

姜玫, 马昌社. 基于格的两轮多重签名方案[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 113-120. doi: 10.6054/j.jscnun.2020102
引用本文: 姜玫, 马昌社. 基于格的两轮多重签名方案[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 113-120. doi: 10.6054/j.jscnun.2020102
JIANG Mei, MA Changshe. A Two-Round Lattice-Based Multi-Signature Scheme[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(6): 113-120. doi: 10.6054/j.jscnun.2020102
Citation: JIANG Mei, MA Changshe. A Two-Round Lattice-Based Multi-Signature Scheme[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(6): 113-120. doi: 10.6054/j.jscnun.2020102

基于格的两轮多重签名方案

doi: 10.6054/j.jscnun.2020102
基金项目: 

国家自然科学基金项目 61672243

详细信息
    通讯作者:

    马昌社,教授,Email:chsma@163.com

  • 中图分类号: TP309

A Two-Round Lattice-Based Multi-Signature Scheme

  • 摘要: 为了抵抗量子攻击且进一步降低通信代价,基于代数格提出了一种支持公钥聚合的两轮多重签名方案(TLMS方案),其安全性可归约于求解环上小整数解(Ring-SIS)问题,并在随机预言机模型下给出方案的安全性分析.相比于现有多重签名方案,基于格上困难问题构造的TLMS方案生成多重签名时仅需进行2轮交互,具有较小的计算开销和通信开销,可满足量子时代最新的安全需求.
  • 表  1  方案参数集

    Table  1.   The sets of scheme parameters

    参数 集合Ⅰ 集合Ⅱ
    维数N 1 024 1 024
    q 2 147 483 659 4 294 967 371
    参数p 2 2
    人数l 5 5
    范围d 4 194 304 4 194 304
    重复次数E 12.19 12.19
    下载: 导出CSV
  • [1] ITAKURA K, NAKAMURA K. A public-key cryptosystem suitable for digital multisignatures[J]. NEC Research & Development, 1983(71):1-8. http://ci.nii.ac.jp/naid/80001758745
    [2] 许艳.面向多用户的无证书数字签名方案研究[D].合肥: 中国科学技术大学, 2015.

    XU Y. Research on multi-user oriented certificateless digital signature schemes[D]. Hefei: University of Science and Technology of China, 2015.
    [3] OKAMOTO T. A digital multisignature scheme using bijective public-key cryptosystems[J]. ACM Transactions on Computer Systems (TOCS), 1988, 6(4):432-441.
    [4] PARK S, PARK S, KIM K, et al. Two efficient RSA multisignature schemes[C]//Proceedings of the First International Conference on Information and Communications Security. Berlin: Springer, 1997: 217-222.
    [5] BELLARE M, NEVEN G. Multi-signatures in the plain public-key model and a general forking lemma[C]//Proceedings of the 13th ACM conference on Computer and communications security. New York: ACM, 2006: 390-399.
    [6] BAGHERZANDI A, CHEON J H, JAECKI S. Multisignatures secure under the discrete logarithm assumption and a generalized forking lemma[C]//Proceedings of the 15th ACM Conference on Computer and communications security. New York: ACM, 2008: 449-458.
    [7] MA C, WENG J, LI Y, et al. Efficient discrete logarithm based multi-signature scheme in the plain public key model[J]. Designs, Codes and Cryptography, 2010, 54(2):121-133.
    [8] EL BANSARKHANI R, STURM J. An efficient lattice-based multisignature scheme with applications to bitcoins[C]//Proceedings of the 15th International Conference on Cryptology and Network Security. Cham: Springer, 2016: 140-155.
    [9] 颜华.多重数字签名研究[D].西宁: 青海师范大学, 2013.
    [10] SYTA E, TAMAS I, VISHER D, et al. Keeping authorities "honest or bust" with decentralized witness cosigning[C]//Proceedings of the 37th IEEE Symposium on Security and Privacy. San Jose: IEEE, 2016: 526-545.
    [11] MAXWELL G, POELSTRA A, SEURIN Y, et al. Simple schnorr multi-signatures with applications to bitcoin[J]. Designs, Codes and Cryptography, 2019, 87(9):2139-2164.
    [12] DRIJVERS M, EDALATNEJAD K, FORD B, et al. On the security of two-round multi-signatures[C]//Proceedings of the 40th IEEE Symposium on Security and Privacy. San Francisco: IEEE, 2019: 1084-1101.
    [13] GVNEYSU T, LYUBASHEVSKY V, PÖPPELMANN T. Practical lattice-based cryptography: a signature scheme for embedded systems[C]//Proceedings of the 14th International Workshop on Cryptographic Hardware and Embedded Systems. Berlin: Springer, 2012: 530-547.
    [14] BAUM C, DAMGÄRD I, LYUBASHEVSKY V, et al. More efficient commitments from structured lattice assumptions[C]//Proceedings of the 11th International Conference on Security and Cryptography for Networks. Cham: Sprin-ger, 2018: 368-385.
    [15] GVNEYSU T, ODER T, PÖPPELMANN T, et al. Software speed records for lattice-based signatures[C]//Procee-dings of the 5th International Workshop on Post-Quantum Cryptography. Berlin: Springer, 2013: 67-82.
    [16] MICCIANCIO D. Generalized compact knapsacks, cyclic lattices, and efficient one-way functions from worst-case complexity assumptions[C]//Proceedings of the 43rd Annual Symposium on Foundations of Computer Science. Vancouver: IEEE, 2002: 356-365.
    [17] LYUBASHEVSKY V, SEILER G. Short, invertible elements in partially splitting cyclotomic rings and applications to lattice-based zero-knowledge proofs[C]//Advances in Cryptology-EUROCRYPT 2018. Cham: Sprin-ger, 2018: 204-224.
    [18] GOLDWASSER S, MICALI S, RIVEST R L. A digital signature scheme secure against adaptive chosen-message attacks[J]. SIAM Journal on Computing, 1988, 17(2):281-308.
    [19] LYUBASHEVSKY V. Lattice signatures without trapdoors[C]//Advances in Cryptology-EUROCRYPT 2012. Berlin: Springer, 2012: 738-755.
    [20] GAMA N, NGUYEN P Q. Predicting lattice reduction[C]//Advances in Cryptology-EUROCRYPT 2008. Berlin: Springer, 2008: 31-51.
    [21] CHEN Y, NGUYEN P Q. BKZ 2.0: Better lattice security estimates[C]//Advances in Cryptology-ASIACRYPT 2011. Berlin: Springer, 2011: 1-20.
  • 加载中
计量
  • 文章访问数:  282
  • HTML全文浏览量:  165
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-10
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回