留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于无人机多光谱数据的农田土壤水分遥感监测

冯珊珊 梁雪映 樊风雷 王塞 伍健恒

冯珊珊, 梁雪映, 樊风雷, 王塞, 伍健恒. 基于无人机多光谱数据的农田土壤水分遥感监测[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 74-81. doi: 10.6054/j.jscnun.2020098
引用本文: 冯珊珊, 梁雪映, 樊风雷, 王塞, 伍健恒. 基于无人机多光谱数据的农田土壤水分遥感监测[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 74-81. doi: 10.6054/j.jscnun.2020098
FENG Shanshan, LIANG Xueying, FAN Fenglei, WANG Sai, WU Jianheng. Monitoring of Farmland Soil Moisture Based on Unmanned Aerial Vehicle Multispectral Data[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(6): 74-81. doi: 10.6054/j.jscnun.2020098
Citation: FENG Shanshan, LIANG Xueying, FAN Fenglei, WANG Sai, WU Jianheng. Monitoring of Farmland Soil Moisture Based on Unmanned Aerial Vehicle Multispectral Data[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(6): 74-81. doi: 10.6054/j.jscnun.2020098

基于无人机多光谱数据的农田土壤水分遥感监测

doi: 10.6054/j.jscnun.2020098
基金项目: 

广东省基础与应用基础研究基金项目 2020A1515010562

广东省烟草专卖局科技项目 201705

详细信息
    通讯作者:

    樊风雷, 教授, Email:fanfenglei@gig.ac.cn

  • 中图分类号: TP79

Monitoring of Farmland Soil Moisture Based on Unmanned Aerial Vehicle Multispectral Data

  • 摘要: 为了提高农田精准管理效率,基于无人机(Unmanned Aerial Vehicle,UAV)实时获取和传输的遥感数据设计了一种快速监测农田土壤水分的方法:首先,利用UAV飞行采集农田的多光谱数据,在农田选取一个代表性的重点观测区域进行随机样点土壤水分探测;然后,利用垂直干旱指数(Perpendicular Drought Index, PDI),结合样点土壤水分数据快速构建农田土壤水分反演模型,进而获得大范围的农田土壤水分监测结果.并通过6个时相获取的UAV数据和样点土壤水分数据,进行方法实验和模型精度分析,结果表明利用该方法进行农田土壤水分监测的精度较高:6个时相土壤水分反演结果的决定系数R2均在0.8以上,其中5个时相的均方根误差RMSE和系统误差SE值均小于0.1.这证明了基于UAV数据设计的农田土壤水分监测方法的有效性和可行性,可以为大范围农田土壤水分的快速监测提供方法参考.
  • 图  1  研究区域

    Figure  1.  The map of the study area

    图  2  无人机、多光谱传感器设备及野外作业

    Figure  2.  The UAV, multispectral sensor equipment and field work

    图  3  基于UAV数据的农田土壤水分监测技术路线

    Figure  3.  The research flowchart of farmland soil moisture monitoring based on UAV data

    图  4  基于UVA数据的农田土壤水分反演模型

    Figure  4.  The inversion models of farmland soil moisture based on UAV data

    图  5  农田土壤水分反演结果

    Figure  5.  The inversion results of farmland soil moisture

    图  6  VWC估算值与对应实测值之间的关系

    Figure  6.  The relationship between real and estimated VWC values

    表  1  数据采集信息

    Table  1.   The information of data collection

    序号 UAV飞行与田间样点土壤水分探测的日期 建模样点数量/个 验证样点数量/个
    1 2019-04-21 16 11
    2 2019-04-28 10 10
    3 2019-05-12 9 11
    4 2019-05-19 11 10
    5 2019-05-25 11 10
    6 2019-06-02 9 10
    下载: 导出CSV

    表  2  农田土壤水分反演结果的精度

    Table  2.   The accuracy of inversion results of farmland soil moisture

    土壤水分监测时间 R2 RMSE SE
    2019-04-21 0.81 0.07 0.03
    2019-04-28 0.83 0.15 0.14
    2019-05-12 0.81 0.05 0.03
    2019-05-19 0.82 0.06 0.05
    2019-05-25 0.80 0.05 0.03
    2019-06-02 0.82 0.04 0.02
    下载: 导出CSV
  • [1] MORAN M S, HYMER D C, QI J, et al. Comparison of ERS-2 SAR and Landsat TM imagery for monitoring agricultural crop and soil conditions[J]. Remote Sensing of Environment, 2002, 79(2/3):243-252. http://www.sciencedirect.com/science/article/pii/S0034425701002760
    [2] KUMAR S V, DIRMEYER P A, PETERS-LIDARD C D, et al. Information theoretic evaluation of satellite soil moisture retrievals[J]. Remote Sensing of Environment, 2018, 204:392-400. http://www.sciencedirect.com/science/article/pii/S0034425717304789
    [3] 伍漫春, 丁建丽, 王高峰.基于地表温度-植被指数特征空间的区域土壤水分反演[J].中国沙漠, 2012, 32(1):148-154. http://d.wanfangdata.com.cn/Periodical/zgsm201201023

    WU M C, DING J L, WANG G F. Regional soil moisture inversion based on surface temperature and vegetation index characteristic spaces[J]. Journal of Desert Research, 2012, 32(1):148-154. http://d.wanfangdata.com.cn/Periodical/zgsm201201023
    [4] 汝博文, 缴锡云, 王耀飞, 等.基于MODIS数据的土壤水分空间变异规律[J].中国农村水利水电, 2016(4):38-42. http://d.wanfangdata.com.cn/Periodical/zgncslsd201604010

    RU B W, JIAO X Y, WANG Y F, et al. Spatial variability of soil moisture content based in MODIS data[J]. China Rural Water and Hydropower, 2016(4):38-42. http://d.wanfangdata.com.cn/Periodical/zgncslsd201604010
    [5] 仝兆远, 张万昌.土壤水分遥感监测的研究进展[J].水土保持通报, 2007(4):107-113. http://www.cqvip.com/Main/Detail.aspx?id=25293937

    TONG Z Y, ZHANG W C. Progress of soil moisture monitoring by remote sensing[J]. Bulletin of Soil and Water Conservation, 2007(4):107-113. http://www.cqvip.com/Main/Detail.aspx?id=25293937
    [6] 吴黎, 张有智, 解文欢, 等.土壤水分的遥感监测方法概述[J].国土资源遥感, 2014, 26(2):19-26. http://www.cnki.com.cn/Article/CJFDTotal-GTYG201402004.htm

    WU L, ZHANG Y Z, XIE W H, et al. Summary of remote sensing methods for monitoring soil moisture[J]. Remote Sensing for Land & Resources, 2014, 26(2):19-26. http://www.cnki.com.cn/Article/CJFDTotal-GTYG201402004.htm
    [7] IDSO S B, JACKSON R D, PINTER P J, et al. Normalizing the stress-degree-day parameter for environmental variability[J]. Agricultural Meteorology, 1981, 24(1):45-55. http://www.sciencedirect.com/science/article/pii/0002157181900327
    [8] JACKSON R D, IDSO S B, REGINATO R J, et al. Canopy temperature as a crop water stress indicator[J]. Water Resources Research, 1981, 17(4):1133-1138. doi: 10.1029/WR017i004p01133/pdf
    [9] MORAN M S, CLARKE T R, INOUE Y, et al. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index[J]. Remote Sensing of Environment, 1994, 49(3):246-263.
    [10] CARLSON T N, GILLIES R R, PERRY E M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover[J]. Remote Sensing Reviews, 1994, 9(1):161-173. doi: 10.1080/02757259409532220
    [11] ULABY F T, ASLAM A, DOBSON M C. Effects of vegetation cover on the radar sensitivity to soil moisture[J]. IEEE Transactions on Geoscience & Remote Sensing, 1982, 20(4):476-481. http://ieeexplore.ieee.org/document/4157335
    [12] 李杏朝.微波遥感监测土壤水分的研究初探[J].遥感技术与应用, 1995(4):1-8. http://www.cnki.com.cn/Article/CJFDTotal-YGJS504.000.htm

    LI X C. A study on soil moisture monitoring by using microwave remote sensing[J]. Remote Sensing Technology & Application, 1995(4):1-8. http://www.cnki.com.cn/Article/CJFDTotal-YGJS504.000.htm
    [13] GHULAM A, QIN Q, ZHAN Z. Designing of the perpendicular drought index[J]. Environmental Geology, 2007, 52(6):1045-1052. doi: 10.1007/s00254-006-0544-2
    [14] 詹志明, 秦其明, 阿布都瓦斯提·吾拉木, 等.基于NIR-Red光谱特征空间的土壤水分监测新方法[J].中国科学:D辑, 2006(11):1020-1026. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200611004.htm

    ZHAN Z M, QIN Q M, GHULAM A, et al. A new method of soil moisture monitoring based on NIR-Red spectral feature space[J]. Science in China:Series D, 2006(11):1020-1026. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200611004.htm
    [15] 陈国茜, 周秉荣, 胡爱军.垂直干旱指数在高寒农区春旱监测中的应用研究[J].遥感技术与应用, 2014, 29(6):949-953. http://d.wanfangdata.com.cn/Periodical/ygjsyyy201406008

    CHEN G X, ZHOU B R, HU A J. Application research of perpendicular drought index for spring drought monitoring in high and cold agricultural area[J]. Remote Sensing Technology & Application, 2014, 29(6):949-953. http://d.wanfangdata.com.cn/Periodical/ygjsyyy201406008
    [16] 鹿国武, 尚建设, 周清, 等.基于高分一号数据的干旱监测方法研究[J].能源与环保, 2020, 42(1):63-66. http://www.ixueshu.com/document/2e1c32172b661dd8ebf9dfd2fc35f29d318947a18e7f9386.html

    LU G W, SHANG J S, ZHOU Q, et al. Research on drought monitoring method based on data of GF-1[J]. China Energy and Environmental Protection, 2020, 42(1):63-66. http://www.ixueshu.com/document/2e1c32172b661dd8ebf9dfd2fc35f29d318947a18e7f9386.html
    [17] 张智韬, 王海峰, 韩文霆, 等.基于无人机多光谱遥感的土壤含水率反演研究[J].农业机械学报, 2018, 49(2):173-181. http://d.wanfangdata.com.cn/periodical/nyjxxb201802023

    ZHANG Z T, WANG H F, HAN W T, et al. Inversion of soil moisture content based on multispectral remote sen-sing of UAVs[J]. Transactions of the Chinese Society of Agricultural Machinery, 2018, 49(2):173-181. http://d.wanfangdata.com.cn/periodical/nyjxxb201802023
    [18] 陈震, 马春芽, 孙浩, 等.基于无人机影像的作物土壤水分亏缺反演方法[J].中国农业信息, 2019, 31(4):23-35. http://d.wanfangdata.com.cn/periodical/nyxxts201904003

    CHEN Z, MA C Y, SUN H, et al. The inversion methods for water stress of irrigation crop based on unmanned aerial vehicle remote sensing[J]. China Agricultural Informa-tics, 2019, 31(4):23-35. http://d.wanfangdata.com.cn/periodical/nyxxts201904003
    [19] 葛翔宇, 丁建丽, 王敬哲, 等.一种基于无人机高光谱影像的土壤墒情检测新方法[J].光谱学与光谱分析, 2020, 40(2):602-609. http://d.wanfangdata.com.cn/periodical/gpxygpfx202002046

    GE X Y, DING J L, WANG J Z, et al. A new method for predicting soil moisture based on UAV hyperspectral ima-ge[J]. Spectroscopy and Spectral Analysis, 2020, 40(2):602-609. http://d.wanfangdata.com.cn/periodical/gpxygpfx202002046
    [20] DEERING D W. Measuring "forage production" of gra-zing units from Landsat MSS data[C]//Proceedings of the 10th International Symposium on Remote Sensing of Environment. Ann Arbor, Michigan: Environmental Research Institute of Michigan, 1975: 1169-1178.
    [21] 赵英时.遥感应用分析原理与方法[M].北京:科学出版社, 2003.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  491
  • HTML全文浏览量:  271
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-01
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回