留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

UV-B预处理对拟南芥uvr8-2突变体响应干旱胁迫的影响

向花 吕桂珍 李韶山

向花, 吕桂珍, 李韶山. UV-B预处理对拟南芥uvr8-2突变体响应干旱胁迫的影响[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 67-73. doi: 10.6054/j.jscnun.2020096
引用本文: 向花, 吕桂珍, 李韶山. UV-B预处理对拟南芥uvr8-2突变体响应干旱胁迫的影响[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 67-73. doi: 10.6054/j.jscnun.2020096
XIANG Hua, LV Guizhen, LI Shaoshan. The Effect of UV-B Pretreatment on the Drought Response of Arabidopsis uvr8-2 Mutants[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(6): 67-73. doi: 10.6054/j.jscnun.2020096
Citation: XIANG Hua, LV Guizhen, LI Shaoshan. The Effect of UV-B Pretreatment on the Drought Response of Arabidopsis uvr8-2 Mutants[J]. Journal of South China normal University (Natural Science Edition), 2020, 52(6): 67-73. doi: 10.6054/j.jscnun.2020096

UV-B预处理对拟南芥uvr8-2突变体响应干旱胁迫的影响

doi: 10.6054/j.jscnun.2020096
基金项目: 

国家自然科学基金项目 31670266

广东省自然科学基金项目 2017030313115

广东省高等学校珠江学者岗位计划资助项目 2012

详细信息
    通讯作者:

    李韶山,教授,Email:lishsh@scnu.edu.cn

  • 中图分类号: Q945.79

The Effect of UV-B Pretreatment on the Drought Response of Arabidopsis uvr8-2 Mutants

  • 摘要: 以拟南芥uvr8-2突变体植株为材料,研究UV-B预处理对植株响应干旱胁迫的影响以及植物激素在此过程中的作用.实验结果表明:从形态观察到生理指标,UV-B预处理显著提高了拟南芥uvr8-2突变体的干旱适应性,与野生型Ler的结果一致;UV-B预处理显著提高了拟南芥uvr8-2突变体抗氧化酶SOD、POD、CAT活性,抗氧化酶基因PODCAT的表达量,以及植物激素ABA、JA、SA的质量分数,降低了细胞膜受损程度.由此推测:UV-B预处理诱导uvr8-2植株的干旱适应性中存在一条不依赖于UVR8的信号转导途径,即通过增加植物逆境响应激素ABA、JA和SA的质量分数,调控抗氧化酶基因CATPOD表达和增强抗氧化酶活性,从而缓解干旱胁迫下拟南芥的叶片萎焉、相对含水量下降等现象.
  • 图  1  UV-B预处理对拟南芥植株表型的影响

    奇数列的植株(1,3,5,7,9,11,13,15)为野生型Ler,偶数列的植株(2,4,6,8,10,12,14,16)为uvr8-2突变体

    Figure  1.  The effect of UV-B pretreatment on phenotype of Arabidopsis

    图  2  UV-B预处理对拟南芥叶片相对含水量的影响

    Figure  2.  The effect of UV-B pretreatment on relative water content in leaves of Arabidopsis

    图  3  UV-B预处理对拟南芥植株抗氧化酶活性的影响

    Figure  3.  The effect of UV-B pretreatment on antioxidant enzyme activity of Arabidopsis

    图  4  UV-B预处理对拟南芥叶片细胞膜渗透率的影响

    Figure  4.  The effect of UV-B pretreatment on membrane leakage rate in leaves of Arabidopsis

    图  5  UV-B预处理对拟南芥植物激素质量分数的影响

    Figure  5.  The effect of UV-B pretreatment on plant hormones of Arabidopsis

    图  6  UV-B预处理对拟南芥植株抗氧化酶基因表达量的影响

    Figure  6.  The effect of UV-B pretreatment on antioxidant gene expression of Arabidopsis

    表  1  实时荧光定量PCR所用引物序列

    Table  1.   Primers for real-time PCR

    基因编号 基因名 引物(5’→3’)
    At3g18780 Actin 2 F:GCTCTTCAGGAGCAATACGAAG
    R:GTTGGGATGAACCAGAAGGA
    At4g33420 POD F:ATGACTTACTACATGATGAGCTGTCC
    R:CAGTGTTGTCTTTCGTTGAATCTAG
    At4g35090 CAT F:AACTCCGCCTGCTGCTGTCTG
    R:ATAGGGCATCAATCCATC
    下载: 导出CSV
  • [1] CALDWELL M M, BALLARE C L, BORNMAN J F, et al. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors[J]. Photochemical & Photobiological Sciences, 2003, 2:29-38. http://www.bioone.org/servlet/linkout?suffix=bibr10&dbid=16&doi=10.1653%2F024.096.0112&key=10.1039%2Fb700019g
    [2] SIDDIQUI M H, AL-WHAIBI M H, BASA LAH M O. Role of nitric oxide in tolerance of plants to abiotic stress[J]. Protoplasma, 2011, 248(3):447-455. doi: 10.1007/s00709-010-0206-9
    [3] MACKERNESS S A H, JOHN C F, JOHN B, et al. Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide[J]. FEBS Letters, 2001, 489(2/3):237-242. http://onlinelibrary.wiley.com/resolve/reference/PMED?id=11165257
    [4] FEDINA I, NEDEVA D, GEORGIEVA K, et al. Methyl jas-monate counteract UV-B stress in barley seedlings[J]. Journal of Agronomy and Crop Science, 2009, 195(3):204-212. http://www.onacademic.com/detail/journal_1000034643823810_390f.html
    [5] DRILIAS P, KARABOURNIOTIS G, LEVIZOU E, et al. The effects of enhanced UV-B radiation on the Mediterranean evergreen sclerophyll Nerium oleander depend on the extent of summer precipitation[J]. Functional Plant Biology, 1997, 24(3):301-306. http://new.med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_JJ0212075444
    [6] SCHMIDT A M, ORMROD D P, LIVINGSTON N J, et al. The interaction of ultraviolet-B radiation and water deficit in two Arabidopsis thaliana genotypes[J]. Annals of Botany, 2000, 85:571-575. http://aob.oxfordjournals.org/content/85/4/571.full
    [7] HE L H, JIA X Y, GAO Z Q, et al. Genotype-dependent responses of wheat (Triticum aestivum L.) seedlings to drought, UV-B radiation and their combined stresses[J]. African Journal of Biotechnology, 2011, 10(20):4046-4056. http://www.researchgate.net/publication/228492852_Genotype-dependent_responses_of_wheat_Triticum_aestivum_L_seedlings_to_drought_UV-B_radiation_and_their_combined_stresses
    [8] JANSEN M A K. Ultraviolet-B radiation effects on plants: induction of morphogenic responses[J]. Physiologia Plantarum, 2002, 116(3):423-429. doi: 10.1034/j.1399-3054.2002.1160319.x
    [9] RIZZINI L, FAVORY J J, CLOIX C, et al. Perception of UV-B by the Arabidopsis UVR8 protein[J]. Science, 2011, 332(6025):103-106. doi: 10.1126/science.1200660
    [10] WU D, HU Q, YAN Z, et al. Structural basis of ultraviolet-B perception by UVR8[J]. Nature, 2012, 484:214-219. http://europepmc.org/abstract/MED/22388820
    [11] QIAN C Z, MAO W W, LIU Y, et al. Dual-source nuclear monomers of UV-B light receptor direct photomorphogenesis in Arabidopsis[J]. Molecular Plant, 2016, 9(12):1671-1674. http://d.g.wanfangdata.com.cn/Periodical_fzzw-e201612014.aspx
    [12] CLOIX C, KAISERLI E, HEILMANN M, et al. C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein[J]. Proceedings of the National Academy of Sciences, USA, 2012, 109(40):16366-16370. http://www.ncbi.nlm.nih.gov/pubmed/22988111/
    [13] FAVORY J J, STEC A, GRUBER H. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis[J]. EMBO Journal, 2009, 28(5):591-601. doi: 10.1038/emboj.2009.4/full
    [14] POULSON M E, BOEGER M R T, DONAHUE R A. Response of photosynthesis to high light and drought for Arabidopsis thaliana grown under a UV-B enhanced light regime[J]. Photosynthesis Research, 2006, 90(1):79-90. doi: 10.1007/s11120-006-9116-2
    [15] JIANG L, WANG Y, LI Q F, et al. Arabidopsis STO/BBX24 negatively regulates UV-B signaling by interacting with COP1 and repressing HY5 transcriptional activity[J]. Cell Research, 2012, 22(6):1046-1057. http://europepmc.org/articles/PMC3474703
    [16] DIAS M C, OLIVEIRA H, COSTA A, et al. Improving elms performance under drought stress: the pretreatment with abscisic acid[J]. Environmental and Experimental Botany, 2014, 100:64-73. http://www.sciencedirect.com/science/article/pii/S0098847213002244
    [17] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000:267-268.
    [18] MAEHLY A C, CHANCE B. The assay of catalases and peroxidases[J]. Methods of Biochemical Analysis, 2006, 1:357-424. http://europepmc.org/abstract/MED/13193536
    [19] SINHA A K. Colorimetric assay of catalase[J]. Analytical Biochemistry, 1972, 47(2):389-394. http://qjmed.oxfordjournals.org/lookup/external-ref?access_num=4556490&link_type=MED&atom=%2Fqjmed%2F101%2F6%2F449.atom
    [20] YAN B, DAI Q, LIU X, et al. Flooding induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves[J]. Plant Soil, 1996, 179(2):261-268. doi: 10.1007/BF00009336
    [21] MAYURA D, MAHESH B, KAUR J P. Changes in antioxidant activity in Gmelina arborea (Verbenaceae) inoculated with Glomus fasciculatum under drought stress[J]. Archives of Phytopathology and Plant Protection, 2011, 44(2):113-126. doi: 10.1080/03235400902927261
    [22] 李绪行, 殷蔚薏, 邵莉楣, 等.黄腐酸增强小麦抗旱能力的生理生化机制初探[J].植物学通报, 1992, 9(2):44-46. http://www.cnki.com.cn/Article/CJFDTotal-ZWXT199202008.htm

    LI X X, YIN W Y, SHAO L M, et al. Preliminary investigation of physiological and biochemical mechanisms on drought-resistance of wheat enhanced by leaf-spraying fulvic acid[J]. Chinese Bulletin of Botany, 1992, 9(2):44-46. http://www.cnki.com.cn/Article/CJFDTotal-ZWXT199202008.htm
    [23] 刘星, 苏良辰, 张拜宏, 等.异源表达花生基因AhGLK1对拟南芥glk1glk2突变体表型特征及抗旱性的影响[J].华南师范大学学报(自然科学版), 2020, 52(3):78-84. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=HNSF202003012

    LIU X, SU L C, ZHANG B H, et al. The effect of heterologous expression of Peanut Gene AhGLK1 on the phenotypic characteristics and drought resistance of Arabidopsis glk2glk2 mutants[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(3):78-84. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=HNSF202003012
    [24] 张富存, 何雨红, 郑有飞, 等. UV-B辐射增加对小麦的影响[J].南京气象学院学报, 2003, 26(4):545-551. http://d.wanfangdata.com.cn/Periodical/njqxxyxb200304014

    ZHANG F C, HE Y H, ZHENG Y F, et al. Effect of enhanced UV-B radiation on wheat[J]. Journal of Nanjing Institute of Meteorology, 2003, 26(4):545-551. http://d.wanfangdata.com.cn/Periodical/njqxxyxb200304014
    [25] 王传海, 郑有飞, 何都良, 等.紫外辐射UV-B增加对小麦株高和节间细胞长度影响的初步研究[J].中国农学通报, 2004, 20(1):77-78. http://www.cnki.com.cn/Article/CJFDTotal-ZNTB200401024.htm

    WANG C H, ZHEN Y F, HE D L, et al. A primary study on plant height and cell length of winter wheat in response to enhanced ultraviolet-B radiation[J]. Chinese Agricultural Science Bulletin, 2004, 20(1):77-78. http://www.cnki.com.cn/Article/CJFDTotal-ZNTB200401024.htm
    [26] YIN L, ZHANG M, LI Z, et al. Enhanced UV-B radiation increases glyphosate resistance in velvetleaf (Abutilon theophrasti)[J]. Photochemistry and Photobiology, 2012, 88(6):1428-1432. http://www.ncbi.nlm.nih.gov/pubmed/22943570
    [27] POULSON M E, DONAHUE R A, KONVALINKA J, et al. Enhanced tolerance of photosynthesis to high-light and drought stress in Pseudotsuga menziesii seedlings grown in ultraviolet-B radiation[J]. Tree Physiology, 2002, 22(12):829-838. http://treephys.oxfordjournals.org/content/22/12/829.short
    [28] VANHAELEWYN L, PRINSE E, STRAETEN D V D, et al. Hormone-controlled UV-B responses in plants[J]. Journal of Experimental Botany, 2016, 67(15):4469-4482. doi: 10.1093/jxb/erw261
    [29] 李长宁, SRIVASTAVA M K, 农倩, 等.水分胁迫下外源ABA提高甘蔗抗旱性的作用机制[J].作物学报, 2010, 36(5):863-870. http://d.wanfangdata.com.cn/periodical/zuowxb201005020

    LI C N, SRIVASTAVA M K, NONG Q, et al. Mechanism of tolerance to drought in sugarcane plant enhanced by foliage dressing of abscisic acid under water stress[J]. Acta Agronomica Sinica, 2010, 36(5):863-870. http://d.wanfangdata.com.cn/periodical/zuowxb201005020
    [30] 刘杰.水杨酸对黑麦草抗旱性的影响[D].哈尔滨: 东北林业大学, 2009.

    LIU J. The effect of SA on seedlings drought resistance of Lolium perenne Linn[D]. Harbin: Northeast Forestry University, 2009.
    [31] KIM J M, TO T K, MATSUI A, et al. Acetate-mediated novel survival strategy against drought in plants[J]. Nature Plants, 2017, 3(7):17097/1-7. http://europepmc.org/abstract/MED/28650429
    [32] 易小林, 杨丙贤, 宗学凤, 等.信号分子水杨酸减缓干旱胁迫对紫御谷光合和膜脂过氧化的副效应[J].生态学报, 2011, 31(1):67-74. http://d.wanfangdata.com.cn/periodical/stxb201101008

    YI X L, YANG B X, ZONG X F, et al. Signal chemical salicylic acid mitigates the negative effects of drought on photosynthesis and membrance lipid peroxidation of purple majesty[J]. Acta Ecologica Sinica, 2011, 31(1):67-74. http://d.wanfangdata.com.cn/periodical/stxb201101008
    [33] BANDURSKA H, CIESLAK M. The interactive effect of water deficit and UV-B radiation on salicylic acid accumulation in barley roots and leaves[J]. Environmental and Experimental Botany, 2013, 94:9-18. http://www.sciencedirect.com/science/article/pii/S0098847212000652
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  313
  • HTML全文浏览量:  194
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-13
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回